Parton physics on a quantum computer

被引:69
作者
Lamm, Henry [1 ]
Lawrence, Scott [1 ]
Yamauchi, Yukari [1 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
LATTICE GAUGE-THEORIES; SCATTERING;
D O I
10.1103/PhysRevResearch.2.013272
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parton distribution functions and hadronic tensors may be computed on a universal quantum computer without many of the complexities that apply to Euclidean lattice calculations. We detail algorithms for computing predictions of parton distribution functions and the hadronic tensor in the Thirring model. Their generalization to QCD is discussed with the conclusion that the parton distribution function is best obtained by fitting the hadronic tensor rather than direct calculation. As a side effect of this method, we find that lepton-hadron cross sections may be computed relatively cheaply. Finally, we estimate the computational cost of performing such a calculation on a digital quantum computer, including the cost of state preparation for physically relevant parameters.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Model independent determination of the shape function for inclusive b decays and of the structure functions in DIS [J].
Aglietti, U ;
Ciuchini, M ;
Corbo, G ;
Franco, E ;
Martinelli, G ;
Silvestrini, L .
PHYSICS LETTERS B, 1998, 432 (3-4) :411-420
[2]   Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Constantinou, Martha ;
Hadjiyiannakou, Kyriakos ;
Jansen, Karl ;
Scapellato, Aurora ;
Steffens, Fernanda .
PHYSICAL REVIEW D, 2019, 99 (11)
[3]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[4]   Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects [J].
Bali, Gunnar S. ;
Braun, Vladimir M. ;
Glaessle, Benjamin ;
Goeckeler, Meinulf ;
Gruber, Michael ;
Hutzler, Fabian ;
Korcyl, Piotr ;
Schaefer, Andreas ;
Wein, Philipp ;
Zhang, Jian-Hui .
PHYSICAL REVIEW D, 2018, 98 (09)
[5]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[6]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[7]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)
[8]   Compton scattering: From deeply virtual to quasi-real [J].
Belitsky, A. V. ;
Mueller, D. ;
Ji, Y. .
NUCLEAR PHYSICS B, 2014, 878 :214-268
[9]   Digital quantum simulation of lattice gauge theories in three spatial dimensions [J].
Bender, Julian ;
Zohar, Erez ;
Farace, Alessandro ;
Cirac, J. Ignacio .
NEW JOURNAL OF PHYSICS, 2018, 20
[10]   QCD ON ANISOTROPIC LATTICES [J].
BURGERS, G ;
KARSCH, F ;
NAKAMURA, A ;
STAMATESCU, IO .
NUCLEAR PHYSICS B, 1988, 304 (03) :587-600