Every Banach space with a w*-separable dual has a 1+ε-equivalent norm with the ball covering property

被引:22
作者
Cheng LiXin [1 ]
Shi HuiHua [1 ]
Zhang Wen [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 09期
基金
中国国家自然科学基金;
关键词
ball-covering property; renorming; Banach space; MAZUR INTERSECTION PROPERTY; COMPACT; PACKING; SETS;
D O I
10.1007/s11425-009-0175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normed space is said to have ball-covering property if its unit sphere can be contained in the union of countably many open balls off the origin. This paper shows that for every epsilon > 0 every Banach space with a w*-separable dual has a 1+epsilon-equivalent norm with the ball covering property.
引用
收藏
页码:1869 / +
页数:6
相关论文
共 44 条
[1]  
AKHMEOV RR, 1992, MEASURES NONCOMPACTN
[2]  
[Anonymous], 1995, GEN TOPOLOGICAL DEGR
[3]  
[Anonymous], 1989, Contemp Math Amer Math Soc, DOI DOI 10.1090/CONM/085/983386
[4]  
[Anonymous], 2003, INTRO NONLINEAR ANAL, DOI DOI 10.1007/978-1-4419-9158-4
[5]  
APPELL J, 2000, RECENT TRENDS NONLIN
[6]   Almost constrained subspaces of Banach spaces [J].
Bandyopadhyay, P ;
Dutta, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :107-115
[7]  
Bandyopadhyay P, 1991, THESIS INDIAN STAT I THESIS INDIAN STAT I
[8]   The ball generated property in operator spaces [J].
Basu, S .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (02) :169-175
[9]   Ball-covering property of Banach spaces that is not preserved under linear isomorphisms [J].
Cheng LiXin ;
Cheng QingJin ;
Liu XiaoYan .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (01) :143-147
[10]   Ball-covering property of Banach spaces [J].
Cheng, Lixin .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 156 (1) :111-123