Insight into cathode surface to boost the performance of solid-state batteries

被引:70
|
作者
Deng, Sixu [1 ]
Sun, Qian [1 ]
Li, Minsi [1 ]
Adair, Keegan [1 ]
Yu, Chuang [1 ]
Li, Junjie [1 ]
Li, Weihan [1 ]
Fu, Jiamin [1 ]
Li, Xia [1 ]
Li, Ruying [1 ]
Hu, Yongfeng [2 ]
Chen, Ning [2 ]
Huang, Huan [4 ]
Zhang, Li [3 ]
Zhao, Shangqian [3 ]
Lu, Shigang [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[3] China Automot Battery Res Inst Co Ltd, Fifth Floor,43,Min Bldg,North Sanhuan Middle Rd, Beijing 100088, Peoples R China
[4] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Ni-rich NMC; Sulfide electrolyte; Cathode interface; Degradation mechanism; ELECTROCHEMICAL PERFORMANCE; EDGE XANES; EVOLUTION; STORAGE; SULFUR;
D O I
10.1016/j.ensm.2020.12.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cathode interface instability is a significant obstacle for the practical application of sulfide-based all-solid-state lithium-ion batteries (ASSLIBs). However, the origin of cathode interface degradation is lack of comprehensive understanding. In this paper, X-ray characterizations combined with electrochemical analysis are adopted to investigate the underlying degradation mechanism at cathode interface. The results indicate that residual lithium compounds on the surface of Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) are the main reason that triggering the oxidation of sulfide solid-state electrolytes (SSEs), therefore inducing severe side-reactions at cathode interface and structural degradation of NMC811. The degradation of the cathode interface can be significantly suppressed when the cathode surface is cleaned. As a result, the surface cleaned NMC811 without coating demonstrates significantly improved electrochemical performance in both Li5.5PS4.5Cl1.5 (LPSCl) and Li10GeP2S12 (LGPS) based ASSLIBs, proving the universal application of this strategy.
引用
收藏
页码:661 / 668
页数:8
相关论文
共 50 条
  • [1] Solid-State Batteries Based on Organic Cathode Materials
    Gan, Xiaotang
    Yang, Zihao
    Song, Zhiping
    BATTERIES & SUPERCAPS, 2023, 6 (06)
  • [2] Computational Screening of Cathode Coatings for Solid-State Batteries
    Xiao, Yihan
    Miara, Lincoln J.
    Wang, Yan
    Ceder, Gerbrand
    JOULE, 2019, 3 (05) : 1252 - 1275
  • [3] YInterfacial Engineering at Cathode/LATP Interface for High-Performance Solid-State Batteries
    Wang, Senhao
    Li, Shuai
    Wei, Bin
    Lu, Xia
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [4] Graded Cathode Design for Enhanced Performance of Sulfide-Based Solid-State Batteries
    Schlautmann, Eva
    Drews, Janina
    Ketter, Lukas
    Lange, Martin A.
    Danner, Timo
    Latz, Arnulf
    Zeier, Wolfgang G.
    ACS ENERGY LETTERS, 2025,
  • [5] Structural insight and modulating of sulfide-based solid-state electrolyte for high-performance solid-state sodium sulfur batteries
    Dong, Zhi Liang
    Yuan, Yi
    Martins, Vinicius
    Jin, Enzhong
    Gan, Yi
    Lin, Xiaoting
    Gao, Yingjie
    Hao, Xiaoge
    Guan, Yi
    Fu, Jiamin
    Pang, Xin
    Huang, Yining
    Tu, Qingsong Howard
    Sham, Tsun-Kong
    Zhao, Yang
    NANO ENERGY, 2024, 128
  • [6] Revealing the role of the cathode–electrolyte interface on solid-state batteries
    Beniamin Zahiri
    Arghya Patra
    Chadd Kiggins
    Adrian Xiao Bin Yong
    Elif Ertekin
    John B. Cook
    Paul V. Braun
    Nature Materials, 2021, 20 : 1392 - 1400
  • [7] Redox-active cathode interphases in solid-state batteries
    Koerver, Raimund
    Walther, Felix
    Ayguen, Isabel
    Sann, Joachim
    Dietrich, Christian
    Zeier, Wolfgang G.
    Janek, Juergen
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (43) : 22750 - 22760
  • [8] Research progress of cathode/electrolyte interface in solid-state batteries
    Zhang, Anbang
    Wang, Chenyang
    Zhao, Shangqian
    Chang, Zenghua
    Wang, Jiantao
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2022, 50 (11): : 46 - 62
  • [9] Designing Cathodes and Cathode Active Materials for Solid-State Batteries
    Minnmann, Philip
    Strauss, Florian
    Bielefeld, Anja
    Ruess, Raffael
    Adelhelm, Philipp
    Burkhardt, Simon
    Dreyer, Soeren L.
    Trevisanello, Enrico
    Ehrenberg, Helmut
    Brezesinski, Torsten
    Richter, Felix H.
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2022, 12 (35)
  • [10] Cathode Interface Construction by Rapid Sintering in Solid-State Batteries
    Chen, Jinhang
    Chen, Weiyin
    Deng, Bing
    Li, Bowen
    Kittrell, Carter
    Tour, James M.
    SMALL, 2024, 20 (08)