An energy approach to the proof of the existence of Rayleigh waves in an anisotropic elastic half-space

被引:7
作者
Kamotskii, I. V.
Kiselev, A. P.
机构
来源
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS | 2009年 / 73卷 / 04期
关键词
D O I
10.1016/j.jappmathmech.2009.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach based on investigating the energy functional is applied for the first time to the classical problem of Rayleigh waves in an anisotropic half-space with a free boundary. The main object of the investigation is an ordinary differential operator in a variable characterizing the depth. An investigation of the spectrum by variational methods enables a new proof to be given of the existence of a Rayleigh wave in a linear elastic half-space with arbitrary anisotropy, which does not rest on the Stroh formalism. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:464 / 470
页数:7
相关论文
共 18 条
  • [1] ELASTIC-WAVES IN INFINITE AND SEMIINFINITE ANISOTROPIC MEDIA
    ALSHITS, VI
    DARINSKII, AN
    SHUVALOV, AL
    [J]. PHYSICA SCRIPTA, 1992, T44 : 85 - 93
  • [2] ALSHITS VI, 1992, AKUST ZH, V38, P1121
  • [3] [Anonymous], 1970, Crystal Acoustics
  • [4] FREE-SURFACE (RAYLEIGH) WAVES IN ANISOTROPIC ELASTIC HALF-SPACES - THE SURFACE IMPEDANCE METHOD
    BARNETT, DM
    LOTHE, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 402 (1822): : 135 - 152
  • [5] Birman M.S., 1980, Spectral theory of self-adjoint operators in Hilbert spare
  • [6] CHADWICK P, 1977, ADV APPL MECH, V17, P303
  • [7] Duvaut G., 1972, INEQUATIONS MECANIQU, P387
  • [8] EXISTENCE THEOREMS FOR TRAPPED MODES
    EVANS, DV
    LEVITIN, M
    VASSILIEV, D
    [J]. JOURNAL OF FLUID MECHANICS, 1994, 261 : 21 - 31
  • [9] GLAZMAN I. M., 1963, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators
  • [10] [Камоцкий Илья Владимирович Kamotskii Il'ya Vladimirovich], 2008, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V20, P86