Symmetry breaking bifurcations of a parametrically excited pendulum

被引:36
作者
Mann, B. P. [1 ]
Koplow, M. A.
机构
[1] Univ Missouri, Dept Mech & Aerosp Engn, Nonlinear Dynam Lab, Columbia, MO 65211 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Nonlinear Dynam Lab, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
parametric excitation; pendulum; symmetry breaking bifurcations;
D O I
10.1007/s11071-006-9033-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper examines the bifurcation behavior of a planar pendulum subjected to high-frequency parametric excitation along a tilted angle. Parametric nonlinear identification is performed on the experimental system via an optimization approach that utilizes a developed approximate analytical solution. Experimental and theoretical efforts then consider the influence of a subtle tilt angle in the applied parametric excitation by contrasting the predicted and observed mean angle bifurcations with the bifurcations due to excitation applied in either the vertical or horizontal direction. Results show that small deviations from either a perfectly vertical or horizontal excitation will result in symmetry breaking bifurcations as opposed to pitchfork bifurcations.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 10 条
[1]   A PENDULUM THEOREM [J].
ACHESON, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917) :239-245
[2]  
BALACHANDRAN B, 1995, APPL NONLINEAR DYNAM
[3]   On the dynamics of a vertically driven damped planar pendulum [J].
Bartuccelli, MV ;
Gentile, G ;
Georgiou, KV .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :3007-3022
[4]   Symbolic computation of secondary bifurcations in a parametrically excited simple pendulum [J].
Butcher, EA ;
Sinha, SC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (03) :627-637
[5]   Inverted oscillations of a driven pendulum [J].
Clifford, MJ ;
Bishop, SR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1979) :2811-2817
[6]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[7]  
Nayfeh A. H., 1979, NONLINEAR OSCILLATIO
[8]   Bifurcations in the mean angle of a horizontally shaken pendulum: Analysis and experiment [J].
Schmitt, JM ;
Bayly, PV .
NONLINEAR DYNAMICS, 1998, 15 (01) :1-14
[9]   Some general effects of strong high-frequency excitation: Stiffening, biasing and smoothening [J].
Thomsen, JJ .
JOURNAL OF SOUND AND VIBRATION, 2002, 253 (04) :807-831
[10]  
Virgin L., 2000, INTRO EXPT NONLINEAR