Hybridization and Dehybridization of Plasmonic Modes

被引:15
作者
Movsesyan, Artur [1 ,2 ]
Muravitskaya, Alina [3 ]
Castilla, Marion [1 ,2 ]
Kostcheev, Sergei [1 ,2 ]
Proust, Julien [1 ,2 ]
Plain, Jerome [1 ,2 ]
Baudrion, Anne-Laure [1 ,2 ]
Vincent, Remi [1 ,2 ]
Adam, Pierre-Michel [1 ,2 ]
机构
[1] Univ Technol Troyes, Lab Light Nanomat & Nanotechnol L2n, F-10000 Troyes, France
[2] CNRS ERL 7004, F-10000 Troyes, France
[3] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk 220072, BELARUS
关键词
METAL NANOPARTICLES; OPTICAL-PROPERTIES; SUBSTRATE; GOLD; SENSITIVITY; NANOCUBE; SENSORS; LIGHT; FIELD; SHAPE;
D O I
10.1021/acs.jpcc.0c08570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The plasmon resonances (modes) of a metal nanostructure can be defined as a dipole, a quadrupole, or high-order modes depending on the surface charge distribution induced by the incident field. In a nonsymmetrical environment or clusters, the modes can hybridize and exhibit different behavior and properties. In this work, we study experimentally and numerically the substrate-induced hybridization of plasmonic modes of a silver nanocylinder. The applications of plasmonic nanoparticles such as refractive index sensing and enhanced spectroscopies often rely on the sustained mode spectral position and specific spatial near-field distribution. However, we show that the implementation of such plasmonic nanoparticles in a sensing system can result in a change of the mode nature and its hybridization or dehybridization. These changes are not clearly pronounced in the far-field spectra and then may result in unexpected modifications of the sensor behavior. We show that the hybridization between the dipolar and quadrupolar modes of the plasmonic nanoparticle on the substrate results from quadrupolar mode excitation because of the superposition of the reflected and incoming light and, then, depends on the reflection of the substrate. The existence of the hybridized modes strongly depends on the surrounding environment of nanoparticles, and after the deposition of the nanometric polymer layer on top of the nanoparticle, the hybridized modes vanish and are replaced by uncoupled multipolar resonances.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 39 条
  • [1] Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: Lossy material and evanescent fields
    Abdijalilov, Kakhkhor
    Schneider, John B.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 : 454 - 458
  • [2] The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter
    Besteiro, Lucas V.
    Yu, Peng
    Wang, Zhiming
    Holleitner, Alexander W.
    Hartland, Gregory V.
    Wiederrecht, Gary P.
    Govorov, Alexander O.
    [J]. NANO TODAY, 2019, 27 : 120 - 145
  • [3] Plasmonic properties of silver nanocube monolayers on high refractive index substrates
    Bottomley, Adam
    Prezgot, Daniel
    Ianoul, Anatoli
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 109 (04): : 869 - 872
  • [4] Cavity modes and their excitations in elliptical plasmonic patch nanoantennas
    Chakrabarty, Ayan
    Wang, Feng
    Minkowski, Fred
    Sun, Kai
    Wei, Qi-Huo
    [J]. OPTICS EXPRESS, 2012, 20 (11): : 11615 - 11624
  • [5] Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam
    Chu, Ming-Wen
    Myroshnychenko, Viktor
    Chen, Cheng Hsuan
    Deng, Jing-Pei
    Mou, Chung-Yuan
    Javier Garcia de Abajo, F.
    [J]. NANO LETTERS, 2009, 9 (01) : 399 - 404
  • [6] Accessing the Hotspots of Cavity Plasmon Modes in Vertical Metal-Insulator-Metal Structures for Surface Enhanced Raman Scattering
    Dai, Fang
    Horrer, Andreas
    Adam, Pierre-Michel
    Fleischer, Monika
    [J]. ADVANCED OPTICAL MATERIALS, 2020, 8 (07)
  • [7] Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect
    Dmitriev, Alexandre
    Hagglund, Carl
    Chen, Si
    Fredriksson, Hans
    Pakizeh, Tavakol
    Kall, Mikael
    Sutherland, Duncan S.
    [J]. NANO LETTERS, 2008, 8 (11) : 3893 - 3898
  • [8] An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML
    Gedney, Stephen D.
    Zhao, Bo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (03) : 838 - 847
  • [9] Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters
    Giannini, Vincenzo
    Fernandez-Dominguez, Antonio I.
    Heck, Susannah C.
    Maier, Stefan A.
    [J]. CHEMICAL REVIEWS, 2011, 111 (06) : 3888 - 3912
  • [10] HAGEMANN HJ, 1975, J OPT SOC AM, V65, P742, DOI 10.1364/JOSA.65.000742