2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma

被引:42
作者
Starke, Sebastian [1 ,2 ,3 ,4 ,5 ]
Leger, Stefan [2 ,3 ,4 ,6 ]
Zwanenburg, Alex [2 ,3 ,4 ,6 ]
Leger, Karoline [2 ,3 ,4 ,6 ,7 ,8 ]
Lohaus, Fabian [2 ,3 ,4 ,6 ,7 ,8 ]
Linge, Annett [2 ,3 ,4 ,6 ,7 ,8 ]
Schreiber, Andreas [9 ]
Kalinauskaite, Goda [10 ,11 ,12 ]
Tinhofer, Inge [10 ,11 ,12 ]
Guberina, Nika [10 ,11 ,13 ,14 ]
Guberina, Maja [10 ,11 ]
Balermpas, Panagiotis [15 ,16 ]
von der Grun, Jens [15 ,16 ]
Ganswindt, Ute [17 ,18 ,19 ,20 ]
Belka, Claus [17 ,18 ,19 ]
Peeken, Jan C. [17 ,21 ]
Combs, Stephanie E. [17 ,21 ,22 ]
Boeke, Simon [23 ,24 ,25 ]
Zips, Daniel [23 ,24 ,25 ]
Richter, Christian [2 ,3 ,4 ,26 ]
Troost, Esther G. C. [2 ,3 ,4 ,6 ,7 ,8 ,26 ]
Krause, Mechthild [2 ,3 ,4 ,6 ,7 ,8 ,26 ]
Baumann, Michael [2 ,3 ,4 ,6 ,7 ,8 ,26 ,27 ]
Loeck, Steffen [2 ,3 ,4 ,6 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Dept Informat Serv & Comp, Dresden, Germany
[2] Tech Univ Dresden, Fac Med, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[3] Tech Univ Dresden, Fac Med, Univ Hosp Carl Gustav Carus, Dresden, Germany
[4] German Canc Res Ctr, Heidelberg, Germany
[5] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[6] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[7] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[8] Tech Univ Dresden, Fac Med, Univ Hosp Carl Gustav Carus, Dresden, Germany
[9] Hosp Dresden Friedrichstadt, Dept Radiotherapy, Dresden, Germany
[10] German Canc Res Ctr, Heidelberg, Germany
[11] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[12] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[13] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[14] Univ Duisburg Essen, Dept Radiotherapy, Fac Med, Essen, Germany
[15] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[16] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[17] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[18] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[19] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[20] Med Univ Innsbruck, Dept Radiat Oncol, Anichstr 5, A-6020 Innsbruck, Austria
[21] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum Munchen, Inst Radiat Med IRM, Neuherberg, Germany
[23] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[24] Eberhard Karls Univ Tubingen, Dept Radiat Oncol, Fac Med, Tubingen, Germany
[25] Eberhard Karls Univ Tubingen, Univ Tubingen Hosp, Tubingen, Germany
[26] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[27] German Canc Res Ctr, Heidelberg, Germany
关键词
GOOD PROGNOSIS SUBGROUPS; POSTOPERATIVE RADIOCHEMOTHERAPY; MARKER EXPRESSION; PROSPECTIVE TRIAL; TUMOR VOLUME; CANCER; SURVIVAL; RADIOMICS; HYPOXIA; PET;
D O I
10.1038/s41598-020-70542-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model's ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (p = 0.001). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
Aggarwal K., 2019, ARXIV190512868
[3]  
[Anonymous], 2015, KERAS
[4]   Deep segmentation networks predict survival of non-small cell lung cancer [J].
Baek, Stephen ;
He, Yusen ;
Allen, Bryan G. ;
Buatti, John M. ;
Smith, Brian J. ;
Tong, Ling ;
Sun, Zhiyu ;
Wu, Jia ;
Diehn, Maximilian ;
Loo, Billy W. ;
Plichta, Kristin A. ;
Seyedin, Steven N. ;
Gannon, Maggie ;
Cabel, Katherine R. ;
Kim, Yusung ;
Wu, Xiaodong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Radiation oncology in the era of precision medicine [J].
Baumann, Michael ;
Krause, Mechthild ;
Overgaard, Jens ;
Debus, Juergen ;
Bentzen, Soren M. ;
Daartz, Juliane ;
Richter, Christian ;
Zips, Daniel ;
Bortfeld, Thomas .
NATURE REVIEWS CANCER, 2016, 16 (04) :234-249
[6]   Post-radiochemotherapy PET radiomics in head and neck cancer - The influence of radiomics implementation on the reproducibility of local control tumor models [J].
Bogowicz, Marta ;
Leijenaar, Ralph T. H. ;
Tanadini-Lang, Stephanie ;
Riesterer, Oliver ;
Pruschy, Martin ;
Studer, Gabriela ;
Unkelbach, Jan ;
Guckenberger, Matthias ;
Konukoglu, Ender ;
Lambin, Philippe .
RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) :385-391
[7]  
Chapfuwa Paidamoyo, 2018, Proc Mach Learn Res, V80, P735
[8]   Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data [J].
Ching, Travers ;
Zhu, Xun ;
Garmire, Lana X. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
[9]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[10]   Deep learning in head & neck cancer outcome prediction [J].
Diamant, Andre ;
Chatterjee, Avishek ;
Vallieres, Martin ;
Shenouda, George ;
Seuntjens, Jan .
SCIENTIFIC REPORTS, 2019, 9 (1)