Mechanical and thermal performance of recycled glass fiber reinforced epoxy composites embedded with carbon nanotubes

被引:6
|
作者
Hiremath, Mritunjay Maharudrayya [1 ]
Gupta, B. N. V. S. Ganesh K. [1 ]
Prusty, Rajesh Kumar [1 ]
Ray, Bankim Chandra [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, FRP Composite Lab, Rourkela 769008, India
关键词
Carbon nanotubes; Discarded fiber reinforced polymer composites; Recycle and reuse; Discontinuous fibers; Mechanical characterization; Fractography;
D O I
10.1016/j.matpr.2020.02.838
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recycling and reusing of Fiber-reinforced polymer (FRP) composite is gaining a major attraction. In this study, the recycling process is achieved by subjecting the discarded FRP composite materials to the hightemperature environment, which leads to decomposing of thermoset matrix yielding only the fibers. These recycled glass fibers are used in terms of discontinues fibers as reinforcement in polymeric composites. But the strength and quality of the obtained recycled glass fiber composite are lower. It is also inevitable that the interface/interphase of FRP composites plays a vital role in governing their properties and performance. With respect to this, the present article focuses on the mechanical performance of neat epoxy, randomly oriented discontinuous glass fiber/epoxy (RODGE) composite, Carbon nanotube reinforced RODGE (CNT-RODGE) composite, and Functionalized Carbon nanotube reinforced RODGE (FCNT-RODGE) composite. The results revealed that FCNT-RODGE composite possessed the highest tensile and flexural strength, followed by CNT-RODGE, RODGE, and neat epoxy composite. This can be attributed to strong interfacial bonding, which in turn results in better stress transfer. Thermal characterization using Differential Scanning Calorimetry (DSC) was also conducted to obtain the glass transition temperature (T-g) of all the composites experimented in this study. It showed that CNT-RODGE composite had the lowest T-g value. Fractography of the fractured samples was also analysed by Scanning Electron Microscope (SEM) micrographs. It revealed the results which were in good agreement with the tensile characteristics. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5029 / 5034
页数:6
相关论文
共 50 条
  • [41] Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties
    Li, Jingwen
    Wu, Zhixiong
    Huang, Chuanjun
    Li, Laifeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 104 : 81 - 88
  • [42] Measurements on the Enhancement of the Thermal Conductivity of an Epoxy Resin when Reinforced with Glass Fiber and Carbon Multiwalled Nanotubes
    Assael, Marc J.
    Antoniadis, Konstantinos D.
    Metaxa, Ifigeneia N.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2009, 54 (09): : 2365 - 2370
  • [43] Properties Of Glass/Carbon Fiber Reinforced Epoxy Hybrid Polymer Composites
    Patel, R. H.
    Sevkani, V. R.
    Patel, B. R.
    Patel, V. B.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [44] Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites
    Dong, Chensong
    Davies, Ian J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2013, 227 (04) : 308 - 317
  • [45] Mechanical, thermal, and viscoelastic properties of polypropylene/glass hybrid composites reinforced with multiwalled carbon nanotubes
    Taraghi, Iman
    Fereidoon, Abdolhossein
    Zamani, Mahdieh M.
    Mohyeddin, Ali
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (28) : 3557 - 3566
  • [46] Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: Mechanical and thermal properties
    Chen, Shusheng
    Feng, Jiachun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 101 : 145 - 151
  • [47] Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites
    Guo, Rui
    Xian, Guijun
    Li, Feng
    Li, Chenggao
    Hong, Bin
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 315
  • [48] Mechanical and Thermal Properties Modeling, Sorption Characteristics of Multiscale (Multiwalled Carbon Nanotubes/Glass Fiber) Filler Reinforced Polypropylene Composites
    Rasana, Nanoth
    Jayanarayanan, Karingamanna
    Pavithra, Ramakrishnan
    Nandhini, Ganesan R.
    Ramya, Pannerselvam
    Veeraraagavan, Annusamy V.
    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2019, 25 : E94 - E107
  • [49] Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass Fiber/Epoxy composites
    Jena, Amrit
    Shubham
    Prusty, Rajesh Kumar
    Ray, Bankim Chandra
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 5184 - 5189
  • [50] Mechanical performance of carbon/epoxy composites with embedded polymeric films
    Qi, Ben
    Bannister, Michael
    ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2, 2007, 334-335 : 469 - +