Mechanical and thermal performance of recycled glass fiber reinforced epoxy composites embedded with carbon nanotubes

被引:7
|
作者
Hiremath, Mritunjay Maharudrayya [1 ]
Gupta, B. N. V. S. Ganesh K. [1 ]
Prusty, Rajesh Kumar [1 ]
Ray, Bankim Chandra [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, FRP Composite Lab, Rourkela 769008, India
关键词
Carbon nanotubes; Discarded fiber reinforced polymer composites; Recycle and reuse; Discontinuous fibers; Mechanical characterization; Fractography;
D O I
10.1016/j.matpr.2020.02.838
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recycling and reusing of Fiber-reinforced polymer (FRP) composite is gaining a major attraction. In this study, the recycling process is achieved by subjecting the discarded FRP composite materials to the hightemperature environment, which leads to decomposing of thermoset matrix yielding only the fibers. These recycled glass fibers are used in terms of discontinues fibers as reinforcement in polymeric composites. But the strength and quality of the obtained recycled glass fiber composite are lower. It is also inevitable that the interface/interphase of FRP composites plays a vital role in governing their properties and performance. With respect to this, the present article focuses on the mechanical performance of neat epoxy, randomly oriented discontinuous glass fiber/epoxy (RODGE) composite, Carbon nanotube reinforced RODGE (CNT-RODGE) composite, and Functionalized Carbon nanotube reinforced RODGE (FCNT-RODGE) composite. The results revealed that FCNT-RODGE composite possessed the highest tensile and flexural strength, followed by CNT-RODGE, RODGE, and neat epoxy composite. This can be attributed to strong interfacial bonding, which in turn results in better stress transfer. Thermal characterization using Differential Scanning Calorimetry (DSC) was also conducted to obtain the glass transition temperature (T-g) of all the composites experimented in this study. It showed that CNT-RODGE composite had the lowest T-g value. Fractography of the fractured samples was also analysed by Scanning Electron Microscope (SEM) micrographs. It revealed the results which were in good agreement with the tensile characteristics. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5029 / 5034
页数:6
相关论文
共 50 条
  • [21] Influence of functionalized multi-walled carbon nanotubes on mechanical properties of glass fiber reinforced polyester composites
    Jebadurai, D. Selwyn
    Babu, A. Suresh
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2015, 22 (02) : 167 - 174
  • [22] Fracture mechanisms in epoxy composites reinforced with carbon nanotubes
    Laurenzi, S.
    Botti, S.
    Rufoloni, A.
    Santonicola, M. G.
    INTERNATIONAL SYMPOSIUM ON DYNAMIC RESPONSE AND FAILURE OF COMPOSITE MATERIALS (DRAF2014), 2014, 88 : 157 - 164
  • [23] Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes
    Godara, A.
    Gorbatikh, L.
    Kalinka, G.
    Warrier, A.
    Rochez, O.
    Mezzo, L.
    Luizi, F.
    van Vuure, A. W.
    Lomov, S. V.
    Verpoest, I.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (09) : 1346 - 1352
  • [24] Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber
    Roham Rafiee
    Amin Ghorbanhosseini
    International Journal of Mechanics and Materials in Design, 2018, 14 : 37 - 50
  • [25] Mixed mode interlaminar fracture of carbon nanotubes enhanced epoxy/glass fiber composites
    Silva, H.
    Ferreira, J. A. M.
    Costa, J. D. M.
    Capela, C.
    MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE VII, 2014, 592-593 : 283 - 286
  • [26] Mechanical recycling of carbon fiber composites: Development of hybrid composites of epoxy resin, carbon fiber, and carbon nanotubes for functional electromagnetic applications
    dos Santos, Maikon Stefano
    dos Anjos, Erick Gabriel Ribeiro
    Montagna, Larissa Stieven
    Passador, Fabio Roberto
    POLYMER ENGINEERING AND SCIENCE, 2025, : 2500 - 2512
  • [27] Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes
    Jin, Fan-Long
    Ma, Chang-Jie
    Park, Soo-Jin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (29-30): : 8517 - 8522
  • [28] Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber
    Rafiee, Roham
    Ghorbanhosseini, Amin
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2018, 14 (01) : 37 - 50
  • [29] Mechanical and thermal expansion properties of aligned carbon nanotube reinforced epoxy composites
    Shirasu, Keiichi
    Tamaki, Itaru
    Yamamoto, Go
    Hashida, Toshiyuki
    MECHANICAL ENGINEERING JOURNAL, 2019, 6 (03):
  • [30] Modeling and Evaluation of Effective Elastic Properties of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Multiscale Composites
    Reddy, B. Ramgopal
    Ramji, K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 1099 - 1103