Approximation of functions by n-separate wavelets in the spaces Lp (R), 1 ≤ p ≤ ∞

被引:0
作者
Pleshcheva, E. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2019年 / 25卷 / 02期
关键词
wavelet; scaling function; basis; multiresolution analysis;
D O I
10.21538/0134-4889-2019-25-2-167-176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the orthonormal bases of n-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space L-2 (R) is formed by shifts and compressions of a single function psi. In contrast to the classical case, we consider a basis of L-2 (R) formed by shifts and compressions of n functions psi(s), s = 1,. . . , n. The constructed n-separate wavelets form an orthonormal basis of L-2(R). In this case, the series Sigma(n)(s=1) Sigma(j is an element of z) Sigma(k is an element of Z)(f, psi(s)(nj+s))psi(s)(nj+s) converges to the function f in the space L-2(R). We write additional constraints on the functions psi(s) and psi(s), s = 1, . . . , n, that provide the convergence of the series to the function f in the spaces L-p (R), 1 <= p <= 8, in the norm and almost everywhere.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 3 条
[1]   ON INFINITELY SMOOTH COMPACTLY SUPPORTED ALMOST-WAVELETS [J].
BERKOLAIKO, MZ ;
NOVIKOV, IY .
MATHEMATICAL NOTES, 1994, 56 (3-4) :877-883
[2]  
Hernandez E., 1996, Studies in Advanced Mathematics, DOI [10.1201/9781420049985, DOI 10.1201/9781420049985]
[3]   New Generalization of Orthogonal Wavelet Bases [J].
Pleshcheva, E. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 273 :S124-S132