Computational Methods for Analysis of Large-Scale CRISPR Screens

被引:4
|
作者
Lin, Xueqiu [1 ]
Chemparathy, Augustine [1 ]
La Russa, Marie [1 ]
Daley, Timothy [1 ,2 ]
Qi, Lei S. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[4] Stanford Univ, ChEMH Chem Engn & Med Human Hlth, Stanford, CA 94305 USA
来源
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020 | 2020年 / 3卷
关键词
CRISPR screen; high-throughput; computational method; genetic interaction; single-cell; gene editing; noncoding element; genotype; phenotype; FUNCTIONAL GENOMICS; GENETIC SCREENS; TRANSCRIPTIONAL ACTIVATION; REGULATORY ELEMENTS; DNA; KNOCKOUT; DESIGN; BASE; IDENTIFICATION; SPECIFICITY;
D O I
10.1146/annurev-biodatasci-020520-113523
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Large-scale CRISPR-C as pooled screens have shown great promise to investigate functional links between genotype and phenotype at the genome-wide scale. In addition to technological advancement, there is a need to develop computational methods to analyze the large datasets obtained from high-throughput CRISPR screens. Many computational methods have been developed to identify reliable gene hits from various screens. In this review, we provide an overview of the technology development of CRISPR screening platforms, with a focus on recent advances in computational methods to identify and model gene effects using CRISPR screen datasets. We also discuss existing challenges and opportunities for future computational methods development.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 50 条
  • [1] MIC-Drop: A platform for large-scale in vivo CRISPR screens
    Parvez, Saba
    Herdman, Chelsea
    Beerens, Manu
    Chakraborti, Korak
    Harmer, Zachary P.
    Yeh, Jing-Ruey J.
    MacRae, Calum A.
    Yost, H. Joseph
    Peterson, Randall T.
    SCIENCE, 2021, 373 (6559) : 1146 - +
  • [2] Decoding the noncoding genome via large-scale CRISPR screens
    Shukla, Abhijit
    Huangfu, Danwei
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2018, 52 : 70 - 76
  • [3] Large-scale F0 CRISPR screens in vivo using MIC-Drop
    Parvez, Saba
    Brandt, Zachary J. J.
    Peterson, Randall T. T.
    NATURE PROTOCOLS, 2023, 18 (06) : 1841 - 1865
  • [4] Common computational tools for analyzing CRISPR screens
    Colic, Medina
    Hart, Traver
    EMERGING TOPICS IN LIFE SCIENCES, 2021, 5 (06) : 779 - 788
  • [5] Genome-scale CRISPR pooled screens
    Sanjana, Neville E.
    ANALYTICAL BIOCHEMISTRY, 2017, 532 : 95 - 99
  • [6] Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens
    de Groot, Reinoud
    Luthi, Joel
    Lindsay, Helen
    Holtackers, Rene
    Pelkmans, Lucas
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (01)
  • [7] Pooled Genome-Scale CRISPR Screens in Single Cells
    Schraivogel, Daniel
    Steinmetz, Lars M.
    Parts, Leopold
    ANNUAL REVIEW OF GENETICS, 2023, 57 : 223 - 244
  • [8] Improved design and analysis of CRISPR knockout screens
    Chen, Chen-Hao
    Xiao, Tengfei
    Xu, Han
    Jiang, Peng
    Meyer, Clifford A.
    Li, Wei
    Brown, Myles
    Liu, X. Shirley
    BIOINFORMATICS, 2018, 34 (23) : 4095 - 4101
  • [9] A benchmark of algorithms for the analysis of pooled CRISPR screens
    Bodapati, Sunil
    Daley, Timothy P.
    Lin, Xueqiu
    Zou, James
    Qi, Lei S.
    GENOME BIOLOGY, 2020, 21 (01)
  • [10] Supercolor Coding Methods for Large-Scale Multiplexing of Biochemical Assays
    Rajagopal, Aditya
    Scherer, Axel
    Homyk, Andrew
    Kartalov, Emil
    ANALYTICAL CHEMISTRY, 2013, 85 (16) : 7629 - 7636