Eradicating catastrophic collapse in interdependent networks via reinforced nodes

被引:111
作者
Yuan, Xin [1 ,2 ]
Hu, Yanqing [3 ,4 ,5 ]
Stanley, H. Eugene [1 ,2 ]
Havlin, Shlomo [6 ,7 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[4] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[5] Univ Elect Sci & Technol China, Big Data Res Ctr, Chengdu 611731, Peoples R China
[6] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[7] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
percolation; interdependent networks; phase transition; collapse; PERCOLATION; GENERATION; INTERNET; FAILURE;
D O I
10.1073/pnas.1621369114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter-the functioning component-comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdos-Renyi(ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks.
引用
收藏
页码:3311 / 3315
页数:5
相关论文
共 42 条
[1]   Distributed energy generation and sustainable development [J].
Alanne, Kari ;
Saari, Arto .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2006, 10 (06) :539-558
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 2010, Complex networks: structure, robustness and function
[4]  
[Anonymous], 2010, Networks: An Introduction, DOI 10.1162/artl_r_00062
[5]   Network physiology reveals relations between network topology and physiological function [J].
Bashan, Amir ;
Bartsch, Ronny P. ;
Kantelhardt, Jan. W. ;
Havlin, Shlomo ;
Ivanov, Plamen Ch .
NATURE COMMUNICATIONS, 2012, 3
[6]   Bootstrap percolation on complex networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW E, 2010, 82 (01)
[7]   Weak percolation on multiplex networks [J].
Baxter, Gareth J. ;
Dorogovtsev, Sergey N. ;
Mendes, Jose F. F. ;
Cellai, Davide .
PHYSICAL REVIEW E, 2014, 89 (04)
[8]   Multiple percolation transitions in a configuration model of a network of networks [J].
Bianconi, Ginestra ;
Dorogovtsev, Sergey N. .
PHYSICAL REVIEW E, 2014, 89 (06)
[9]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[10]  
Bollobas B, 2001, RANDOM GRAPHS 1985