Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems

被引:89
作者
Bagchi, Bijan [2 ]
Fring, Andreas [1 ]
机构
[1] City Univ London, Ctr Math Sci, London EC1V 0HB, England
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
关键词
OPERATORS; SYMMETRY;
D O I
10.1016/j.physleta.2009.09.054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformations of the canonical commutation relations lead to non-Hermitian momentum and position operators and therefore almost inevitably to non-Hermitian Hamiltonians. We demonstrate that such type of deformed quantum mechanical systems may be treated in a similar framework as quasi/pseudo and/or PT-symmetric systems, which have recently attracted much attention. For a newly proposed deformation of exponential type we compute the minimal uncertainty and minimal length, which are essential in almost all approaches to quantum gravity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4307 / 4310
页数:4
相关论文
共 26 条
[1]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[2]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[3]   Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001 [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW D, 2004, 70 (02) :025001-1
[4]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[7]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[8]   BOSE REALIZATION OF A NONCANONICAL HEISENBERG ALGEBRA [J].
BRODIMAS, G ;
JANNUSSIS, A ;
MIGNANI, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :L329-L334
[9]  
Calmet X, 2004, PHYS REV LETT, V93, DOI [10.1103/PhysRevLett.93.211101, 10.1103/PhysRevLett.211101]
[10]   About maximally localized states in quantum mechanics [J].
Detournay, S ;
Gabriel, C ;
Spindel, P .
PHYSICAL REVIEW D, 2002, 66 (12)