Stable extendibility of some complex vector bundles over lens spaces and Schwarzenberger's theorem

被引:1
作者
Hemmi, Yutaka [1 ]
Kobayashi, Teiichi [2 ]
机构
[1] Kochi Univ, Fac Sci, Dept Math, 2-5-1 Akebono Cho, Kochi 7808520, Japan
[2] 292-21 Asakura Ki, Kochi 7808066, Japan
关键词
complex vector bundle; extendible; stably extendible; K-theory; lens space; complex projective space;
D O I
10.32917/hmj/1487991625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain conditions for stable extendibility of some complex vector bundles over the (2n+1) dimensional standard lens space L-n(p) mod p, where p is a prime. Furthermore, we study stable extendibility of the bundle pi(n)* (tau(CPn)) induced by the natural projection pi(n) : L-n (p) -> CPn from the complex tangent bundle tau(CPn) of the complex projective n-space CPn. As an application, we have a result on stable extendibility of tau(CPn) which gives another proof of Schwarzenberger's theorem.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1975, Graduate Texts in Mathematics
[2]  
Hemmi Y., 2016, KOCHI J MATH, V11, P71
[3]   Stable extendibility of vector bundles over real projective spaces [J].
Hemmi, Yutaka ;
Kobayashi, Teiichi .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (17) :2170-2174
[4]  
Hirzebruch F., 1978, TOPOLOGICAL METHODS
[5]  
Imaoka M., 1999, HIROSHIMA MATH J, V29, P273
[7]  
Kobayashi T., 2000, MEM FS KOCHI U A, V21, P31
[8]   EXTENDIBLE VECTOR BUNDLES OVER REAL PROJECTIVE SPACE [J].
SCHWARZENBERGER, RL .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (65) :19-+