Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism

被引:15
|
作者
Son, Aran [1 ]
Kang, Namju [1 ,2 ]
Oh, Sue Young [1 ]
Kim, Ki Woo [1 ]
Muallem, Shmuel [3 ]
Yang, Yu-Mi [1 ]
Shin, Dong Min [1 ,2 ]
机构
[1] Yonsei Univ, Coll Dent, Dept Oral Biol, Seoul, South Korea
[2] Yonsei Univ, Coll Dent, BK21 PLUS Project, Seoul, South Korea
[3] Natl Inst Dent & Craniofacial Res, Epithelial Signaling & Transport Sect, Mol Physiol & Therapeut Branch, NIH, Bethesda, MD USA
基金
新加坡国家研究基金会;
关键词
RANKL; osteoclast differentiation; scaffold protein; osteoporosis; NFATc1; METABOTROPIC GLUTAMATE RECEPTORS; ADAPTER PROTEIN; ACTIVATION; DIFFERENTIATION; MUSCLE; BINDS; CALCINEURIN; COMPLEXES; CALCIUM; FAMILY;
D O I
10.1530/JOE-19-0123
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The receptor activator of nuclear factor-kappa B ligand (RANKL) induces osteoclastogenesis by induction of Ca2+ oscillation, calcineurin activation and translocation into the nucleus of nuclear factor of activated T cells type c1 (NFATc1). Homer proteins are scaffold proteins. They regulate Ca2+ signaling by modulating the activity of multiple Ca2+ signaling proteins. Homers 2 and 3, but not Homer1, also independently affect the interaction between NFATc1 and calcineurin. However, to date, whether and how the Homers are involved in osteoclastogenesis remains unknown. In the present study, we investigated Homer2 and Homer3 roles in Ca2+ signaling and NFATc1 function during osteoclast differentiation. Deletion of Homer2/Homer3 (Homer2/3) markedly decreased the bone density of the tibia, resulting in bone erosion. RANKL-induced osteoclast differentiation is greatly facilitated in Homer2/3 DKO bone marrow-derived monocytes/macrophages (BMMs) due to increased NFATc1 expression and nuclear translocation. However, these findings did not alter RANKL-induced Ca2+ oscillations. Of note, RANKL treatment inhibited Homer proteins interaction with NFATc1, but it was restored by cyclosporine A treatment to inhibit calcineurin. Finally, RANKL treatment of Homer2/3 DKO BMMs significantly increased the formation of multinucleated cells. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation. Specifically, we found that Homer2 and Homer3 regulate NFATc1 function through its interaction with calcineurin to regulate RANKL-induced osteoclastogenesis and bone metabolism.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [41] Asiatic Acid Inhibits OVX-Induced Osteoporosis and Osteoclastogenesis Via Regulating RANKL-Mediated NF-κb and Nfatc1 Signaling Pathways
    Hong, Guoju
    Zhou, Lin
    Han, Xiaorui
    Sun, Ping
    Chen, Zhenqiu
    He, Wei
    Tickner, Jennifer
    Chen, Leilei
    Shi, Xuguang
    Xu, Jiake
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [42] Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca2+-NFATc1 and Cav-1 signaling pathways
    Zou, Binhua
    Zheng, Jiehuang
    Deng, Wende
    Tan, Yanhui
    Jie, Ligang
    Qu, Yuan
    Yang, Qin
    Ke, Minhong
    Ding, Zongbao
    Chen, Yan
    Yu, Qinghong
    Li, Xiaojuan
    PHYTOMEDICINE, 2021, 80
  • [43] 2,5-Dihydroxyacetophenone attenuates RANKL-mediated osteoclastogenesis by affecting the NFATc1 signaling pathway in vitro
    Chen, Hai-Wei
    Chen, Chi-Fen
    Lee, Pei-Rong
    Yiin, Shuenn-Jium
    Liang, Jia-Yun
    Hsu, Jue-Liang
    Chang, Chi-, I
    Chern, Chi-Liang
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2023, 96
  • [44] Agelasine D Suppresses RANKL-Induced Osteoclastogenesis via Down-Regulation of c-Fos, NFATc1 and NF-κB
    Kang, Moo Rim
    Jo, Sun Ah
    Yoon, Yeo Dae
    Park, Ki Hwan
    Oh, Soo Jin
    Yun, Jieun
    Lee, Chang Woo
    Nam, Ki-Hoan
    Kim, Youngsoo
    Han, Sang-Bae
    Yu, Jiyeon
    Rho, Jaerang
    Kang, Jong Soon
    MARINE DRUGS, 2014, 12 (11): : 5643 - 5656
  • [45] Bu-Shen-Ning-Xin decoction: inhibition of osteoclastogenesis by abrogation of the RANKL-induced NFATc1 and NF-κB signaling pathways via selective estrogen receptor α
    Wang, Ling
    Qiu, Xue-Min
    Gui, Yu-Yan
    Xu, Ying-Ping
    Gober, Hans-Juergen
    Li, Da-Jin
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2015, 9 : 3755 - 3766
  • [46] Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL-induced NFAT activation and calcium signaling
    Liu, Chuan
    Cao, Zhen
    Zhang, Wen
    Tickner, Jennifer
    Qiu, Heng
    Wang, Chao
    Chen, Kai
    Wang, Ziyi
    Tan, Renxiang
    Dong, Shiwu
    Xu, Jiake
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (11) : 8971 - 8983
  • [47] Anti-osteoclastogenic effect of fermented mealworm extract by inhibiting RANKL-induced NFATc1 action
    Ham, Ju Ri
    Lee, Mi-Kyung
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2024, 27 (04)
  • [48] Zanthoxylum bungeanum seed oil inhibits RANKL-induced osteoclastogenesis by suppressing ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest in RAW264.7 cells
    He, Fangting
    Luo, Shuhan
    Liu, Sijing
    Wan, Siqi
    Li, Jingjing
    Chen, Jiayi
    Zuo, Haojiang
    Pei, Xiaofang
    JOURNAL OF ETHNOPHARMACOLOGY, 2022, 289
  • [49] AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis
    Li, Chang-hong
    Zhao, Jin-xia
    Sun, Lin
    Yao, Zhong-qiang
    Deng, Xiao-li
    Liu, Rui
    Liu, Xiang-yuan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 435 (04) : 533 - 539
  • [50] Remifentanil Negatively Regulates RANKL-Induced Osteoclast Differentiation and Bone Resorption by Inhibiting c-Fos/NFATc1 Expression
    Yoon, Ji-Young
    Baek, Chul-Woo
    Kim, Hyung-Joon
    Kim, Eun-Jung
    Byeon, Gyeong-Jo
    Yoon, Ji-Uk
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 15 (03) : 333 - 340