Painleve analysis, auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation

被引:44
|
作者
Wei, Guang-Mei [1 ]
Gao, Yi-Tian
Hu, Wei
Zhang, Chun-Yi
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, LMIB, Beijing 100083, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Key Lab Fluid Mech, Minist Educ, Beijing 100083, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100083, Peoples R China
[5] Chinese Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[6] AF Command Post, Meteorol Ctr, Changchun 130051, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL B | 2006年 / 53卷 / 03期
关键词
D O I
10.1140/epjb/e2006-00378-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
There has been considerable interest in the study on the variable-coefficient nonlinear evolution equations in recent years, since they can describe the real situations in many fields of physical and engineering sciences. In this paper, a generalized variable-coefficient KdV (GvcKdV) equation with the external-force and perturbed/dissipative terms is investigated, which can describe the various real situations, including large-amplitude internal waves, blood vessels, Bose-Einstein condensates, rods and positons. The Painleve analysis leads to the explicit constraint on the variable coefficients for such a equation to pass the Painleve test. An auto-Backlund transformation is provided by use of the truncated Painleve expansion and symbolic computation. Via the given auto-Backlund transformation, three families of analytic solutions are obtained, including the solitonic and periodic solutions.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
  • [1] Auto-Backlund transformation and analytic solutions for general variable-coefficient KdV equation
    Hong, WY
    Jung, YD
    PHYSICS LETTERS A, 1999, 257 (3-4) : 149 - 152
  • [2] Painlevé analysis, auto-Bäcklund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation
    Guang-Mei Wei
    Yi-Tian Gao
    Wei Hu
    Chun-Yi Zhang
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 53 : 343 - 350
  • [3] Painleve property, auto-Backlund transformation and analytic solutions of a variable-coefficient modified Korteweg-de Vries model in a hot magnetized dusty plasma with charge fluctuations
    Gai, Xiao-Ling
    Gao, Yi-Tian
    Yu, Xin
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) : 271 - 279
  • [4] BACKLUND TRANSFORMATION AND ANALYTIC SOLUTIONS FOR A GENERALIZED VARIABLE-COEFFICIENT MODIFIED KORTEWEG-DE VRIES MODEL FROM FLUID DYNAMICS AND PLASMAS
    Sun, Fu-Wei
    Gao, Yi-Tian
    Zhang, Chun-Yu
    Xu, Xiao-Ge
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (11): : 1659 - 1671
  • [5] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626
  • [6] Various methods for constructing auto-Backlund transformations for a generalized variable-coefficient Korteweg-de Vries model from plasmas and fluid dynamics
    Zhang Chun-Yi
    Gao Yi-Tian
    Xu Tao
    Li Li-Li
    Sun Fu-Wei
    Li Juan
    Meng Xiang-Hua
    Wei Guang-Mei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (03) : 673 - 678
  • [7] Auto-Backlund transformation and new exact solutions of the generalized variable-coefficients two-dimensional Korteweg-de Vries model
    Li, Ye-Zhou
    Liu, Jian-Guo
    PHYSICS OF PLASMAS, 2007, 14 (02)
  • [8] N-SOLITON SOLUTIONS, AUTO-BACKLUND TRANSFORMATIONS AND LAX PAIR FOR A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION VIA SYMBOLIC COMPUTATION
    Li, Li-Li
    Tian, Bo
    Zhang, Chun-Yi
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (10): : 2383 - 2393
  • [9] Periodic and decay mode solutions of the generalized variable-coefficient Korteweg-de Vries equation
    Zhang, Yufeng
    Liu, Jiangen
    MODERN PHYSICS LETTERS B, 2019, 33 (20):
  • [10] BACKLUND TRANSFORMATION FOR SOLUTIONS OF KORTEWEG-DE VRIES EQUATION
    WAHLQUIST, HD
    ESTABROOK, FB
    PHYSICAL REVIEW LETTERS, 1973, 31 (23) : 1386 - 1390