Holographic torus entanglement and its renormalization group flow

被引:13
作者
Bueno, Pablo [1 ,2 ]
Witczak-Krempa, William [3 ,4 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[3] Univ Montreal, Dept Phys, Quebec City, PQ H3C 3J7, Canada
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENTROPY;
D O I
10.1103/PhysRevD.95.066007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the universal contributions to the entanglement entropy (EE) of 2 + 1-dimensional and 3 + 1-dimensional holographic conformal field theories (CFTs) on topologically nontrivial manifolds, focusing on tori. The holographic bulk corresponds to anti-de Sitter-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2 + 1 dimensions, in the simple limit where the torus becomes a thin one-dimensional ring, the EE reduces to a shape-independent constant 2 gamma. This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the renormalization group flow of. by defining a renormalized EE that ( 1) is applicable to general QFTs, ( 2) resolves the failure of the area law subtraction, and ( 3) is inspired by the F-theorem. We find that the renormalized. decreases monotonically at small coupling when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of nonuniqueness of such renormalized EEs both in 2 + 1 dimensions and 3 + 1 dimensions.
引用
收藏
页数:20
相关论文
共 71 条
[61]   Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence [J].
Ryu, Shinsei ;
Takayanagi, Tadashi .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[62]   Black hole microstates in anti-de Sitter space [J].
Shaghoulian, Edgar .
PHYSICAL REVIEW D, 2016, 94 (10)
[63]   Entanglement entropy, conformal invariance and extrinsic geometry [J].
Solodukhin, Sergey N. .
PHYSICS LETTERS B, 2008, 665 (04) :305-309
[64]   Entanglement entropy from a holographic viewpoint [J].
Takayanagi, Tadashi .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (15)
[65]   Renormalized entanglement entropy [J].
Taylor, Marika ;
Woodhead, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08)
[66]  
Van Raamsdonk M., ARXIV09072939
[67]   BUILDING UP SPACE-TIME WITH QUANTUM ENTANGLEMENT [J].
Van Raamsdonk, Mark .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (14) :2429-2435
[68]   Entanglement entropy of large-N Wilson-Fisher conformal field theory [J].
Whitsitt, Seth ;
Witczak-Krempa, William ;
Sachdev, Subir .
PHYSICAL REVIEW B, 2017, 95 (04)
[69]   Cornering Gapless Quantum States via Their Torus Entanglement [J].
Witczak-Krempa, William ;
Sierens, Lauren E. Hayward ;
Melko, Roger G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (07)
[70]  
Witten E., 1998, Adv. Theor. Math. Phys, V2, P253, DOI [DOI 10.4310/ATMP.1998.V2.N3.A3, DOI 10.4310/ATMP.1998.V2.N2.A2]