Holographic torus entanglement and its renormalization group flow

被引:13
作者
Bueno, Pablo [1 ,2 ]
Witczak-Krempa, William [3 ,4 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[3] Univ Montreal, Dept Phys, Quebec City, PQ H3C 3J7, Canada
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENTROPY;
D O I
10.1103/PhysRevD.95.066007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the universal contributions to the entanglement entropy (EE) of 2 + 1-dimensional and 3 + 1-dimensional holographic conformal field theories (CFTs) on topologically nontrivial manifolds, focusing on tori. The holographic bulk corresponds to anti-de Sitter-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2 + 1 dimensions, in the simple limit where the torus becomes a thin one-dimensional ring, the EE reduces to a shape-independent constant 2 gamma. This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the renormalization group flow of. by defining a renormalized EE that ( 1) is applicable to general QFTs, ( 2) resolves the failure of the area law subtraction, and ( 3) is inspired by the F-theorem. We find that the renormalized. decreases monotonically at small coupling when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of nonuniqueness of such renormalized EEs both in 2 + 1 dimensions and 3 + 1 dimensions.
引用
收藏
页数:20
相关论文
共 71 条
[21]   Towards a derivation of holographic entanglement entropy [J].
Casini, Horacio ;
Huerta, Marina ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05)
[22]   Comments on Jacobson's "entanglement equilibrium and the Einstein equation" [J].
Casini, Horatio ;
Galante, Damian A. ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03)
[23]  
Chen X., ARXIV161101847
[24]   Scaling of entanglement in 2+1-dimensional scale-invariant field theories [J].
Chen, Xiao ;
Cho, Gil Young ;
Faulkner, Thomas ;
Fradkin, Eduardo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
[25]   Shape dependence of two-cylinder Renyi entropies for free bosons on a lattice [J].
Chojnacki, Leilee ;
Cook, Caleb Q. ;
Dalidovich, Denis ;
Sierens, Lauren E. Hayward ;
Lantagne-Hurtubise, Etienne ;
Melko, Roger G. ;
Vlaar, Tiffany J. .
PHYSICAL REVIEW B, 2016, 94 (16)
[26]   Holographic reconstruction of general bulk surfaces [J].
Czech, Bartlomiej ;
Dong, Xi ;
Sully, James .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11)
[27]   Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids [J].
Dong, Shiying ;
Fradkin, Eduardo ;
Leigh, Robert G. ;
Nowling, Sean .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05)
[28]   Bulk emergence and the RG flow of entanglement entropy [J].
Faulkner, Thomas .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[29]   Topological Entanglement Reacutenyi Entropy and Reduced Density Matrix Structure [J].
Flammia, Steven T. ;
Hamma, Alioscia ;
Hughes, Taylor L. ;
Wen, Xiao-Gang .
PHYSICAL REVIEW LETTERS, 2009, 103 (26)
[30]   Entanglement entropy of 2D conformal quantum critical points: Hearing the shape of a quantum drum [J].
Fradkin, Eduardo ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)