Holographic torus entanglement and its renormalization group flow

被引:13
作者
Bueno, Pablo [1 ,2 ]
Witczak-Krempa, William [3 ,4 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[3] Univ Montreal, Dept Phys, Quebec City, PQ H3C 3J7, Canada
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENTROPY;
D O I
10.1103/PhysRevD.95.066007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the universal contributions to the entanglement entropy (EE) of 2 + 1-dimensional and 3 + 1-dimensional holographic conformal field theories (CFTs) on topologically nontrivial manifolds, focusing on tori. The holographic bulk corresponds to anti-de Sitter-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2 + 1 dimensions, in the simple limit where the torus becomes a thin one-dimensional ring, the EE reduces to a shape-independent constant 2 gamma. This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the renormalization group flow of. by defining a renormalized EE that ( 1) is applicable to general QFTs, ( 2) resolves the failure of the area law subtraction, and ( 3) is inspired by the F-theorem. We find that the renormalized. decreases monotonically at small coupling when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of nonuniqueness of such renormalized EEs both in 2 + 1 dimensions and 3 + 1 dimensions.
引用
收藏
页数:20
相关论文
共 71 条
[1]  
[Anonymous], ARXIV161100016
[2]   Entanglement entropy as a witness of the Aharonov-Bohm effect in QFT [J].
Arias, Raul E. ;
Blanco, David D. ;
Casini, Horacio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (14)
[3]   Bulk curves from boundary data in holography [J].
Balasubramanian, Vijay ;
Chowdhury, Borun D. ;
Czech, Bartlomiej ;
de Boer, Jan ;
Heller, Michal P. .
PHYSICAL REVIEW D, 2014, 89 (08)
[4]  
Belin A., ARXIV161006186
[5]   On the architecture of spacetime geometry [J].
Bianchi, Eugenio ;
Myers, Robert C. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
[6]   DUALITY CONDITION FOR QUANTUM FIELDS [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (03) :303-321
[7]   Bounds on corner entanglement in quantum critical states [J].
Bueno, Pablo ;
Witczak-Krempa, William .
PHYSICAL REVIEW B, 2016, 93 (04)
[8]   Corner contributions to holographic entanglement entropy [J].
Bueno, Pablo ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08) :1-54
[9]   Universality of Corner Entanglement in Conformal Field Theories [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,