Cyclic star products and universalities in symbolic dynamics of trimodal maps

被引:13
作者
Zhou, Z [1 ]
Peng, SL
机构
[1] Yunnan Univ, Dept Phys, Ctr Nonlinear Complex Syst, Kunming 650091, Yunnan, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
来源
PHYSICA D | 2000年 / 140卷 / 3-4期
基金
中国国家自然科学基金;
关键词
cyclic star product; symbolic dynamics; metric universality; TSSK sequences of Cyc(I) type and Cyc(II) type; height ordering relation;
D O I
10.1016/S0167-2789(99)00236-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cyclic star products for the triple superstable kneading (TSSK) sequences are presented for symbolic dynamics of trimodal maps of endomorphisms on the interval. Feigenbaum's metric universalities in unimodal maps are generalized to trimodal maps. Four equal-value universal convergent rates {delta(a), delta(c), delta(eta), delta(a,c,eta)} and three universal scaling factors {alpha(C), alpha(D), alpha(E)} are first obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 15 条
  • [1] Brucks K, 1997, FUND MATH, V152, P189
  • [2] Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps
    Cao, KF
    Peng, SL
    [J]. PHYSICAL REVIEW E, 1999, 60 (03): : 2745 - 2760
  • [3] ITERATIVE PROPERTIES OF A ONE-DIMENSIONAL QUARTIC MAP - CRITICAL LINES AND TRICRITICAL BEHAVIOR
    CHANG, SJ
    WORTIS, M
    WRIGHT, JA
    [J]. PHYSICAL REVIEW A, 1981, 24 (05): : 2669 - 2684
  • [4] DERRIDA B, 1978, ANN I H POINCARE A, V29, P305
  • [5] UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS
    FEIGENBAUM, MJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) : 669 - 706
  • [6] HAO BL, 1989, ELEMENTARY SYMBOLIC, P105
  • [7] Star transformations and their genealogical varieties in symbolic dynamics of four letters
    Liu, HZ
    Zhou, Z
    Peng, SL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (42): : 8431 - 8450
  • [8] SOME FLESH ON THE SKELETON - THE BIFURCATION STRUCTURE OF BIMODAL MAPS
    MACKAY, RS
    TRESSER, C
    [J]. PHYSICA D, 1987, 27 (03): : 412 - 422
  • [9] Metropolis N., 1973, Journal of Combinatorial Theory, Series A, V15, P25, DOI 10.1016/0097-3165(73)90033-2
  • [10] MILNOR J, 1988, LECT NOTES MATH, V1342, P465