Non-Diffractive Bessel Beams for Ultrafast Laser Scanning Platform and Proof-Of-Concept Side-Wall Polishing of Additively Manufactured Parts

被引:26
作者
Nguyen, Huu Dat [1 ]
Sedao, Xxx [1 ,2 ]
Mauclair, Cyril [1 ,2 ]
Bidron, Guillaume [2 ]
Faure, Nicolas [1 ]
Moreno, Enrique [1 ]
Colombier, Jean-Philippe [1 ]
Stoian, Razvan [1 ]
机构
[1] Univ Jean Monnet, Univ Lyon, CNRS, Lab Hubert Curien,Inst Opt,Grad Sch,UMR 5516, F-42000 St Etienne, France
[2] GIE Manutech USD, F-42000 St Etienne, France
关键词
Bessel beam; non-diffractive; self-healing; ultrafast laser; surface processing; additive manufacturing; selective laser melting; laser powder bed fusion; scanner; FEMTOSECOND; MICROSTRUCTURE; ABLATION; TITANIUM; DENSITY; PULSES;
D O I
10.3390/mi11110974
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report the potential use of non-diffractive Bessel beam for ultrafast laser processing in additive manufacturing environments, its integration into a fast scanning platform, and proof-of-concept side-wall polishing of stainless steel-based additively fabricated parts. We demonstrate two key advantages of the zeroth-order Bessel beam: the significantly long non-diffractive length for large tolerance of sample positioning and the unique self-reconstruction property for un-disrupted beam access, despite the obstruction of metallic powders in the additive manufacturing environment. The integration of Bessel beam scanning platform is constructed by finely adapting the Bessel beam into a Galvano scanner. The beam sustained its good profile within the scan field of 35 x 35 mm(2). As a proof of concept, the platform showcases its advanced capacity by largely reducing the side-wall surface roughness of an additively as-fabricated workpiece from Ra 10 mu m down to 1 mu m. Therefore, the demonstrated Bessel-Scanner configuration possesses great potential for integrating in a hybrid additive manufacturing apparatus.
引用
收藏
页数:14
相关论文
共 53 条
[31]   Bessel beams: diffraction in a new light [J].
McGloin, D ;
Dholakia, K .
CONTEMPORARY PHYSICS, 2005, 46 (01) :15-28
[32]   THE AXICON - A NEW TYPE OF OPTICAL ELEMENT [J].
MCLEOD, JH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1954, 44 (08) :592-597
[33]   Ultrafast laser induced electronic and structural modifications in bulk fused silica [J].
Mishchik, K. ;
D'Amico, C. ;
Velpula, P. K. ;
Mauclair, C. ;
Boukenter, A. ;
Ouerdane, Y. ;
Stoian, R. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (13)
[34]   Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput [J].
Neuenschwander, B. ;
Jaeggi, B. ;
Schmid, M. ;
Hennig, G. .
8TH INTERNATIONAL CONFERENCE ON LASER ASSISTED NET SHAPE ENGINEERING (LANE 2014), 2014, 56 :1047-1058
[35]   From fs to sub-ns: Dependence of the material removal rate on the pulse duration for metals [J].
Neuenschwander, B. ;
Jaeggi, B. ;
Schmid, M. .
LASERS IN MANUFACTURING (LIM 2013), 2013, 41 :787-794
[36]  
Nguyen H.D., 2020, SCI REP
[37]   Ablation of metals by ultrashort laser pulses [J].
Nolte, S ;
Momma, C ;
Jacobs, H ;
Tunnermann, A ;
Chichkov, BN ;
Wellegehausen, B ;
Welling, H .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (10) :2716-2722
[38]   Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J].
Prashanth, K. G. ;
Scudino, S. ;
Klauss, H. J. ;
Surreddi, K. B. ;
Loeber, L. ;
Wang, Z. ;
Chaubey, A. K. ;
Kuehn, U. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 :153-160
[39]   Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting [J].
Ren, D. C. ;
Zhang, H. B. ;
Liu, Y. J. ;
Li, S. J. ;
Jin, W. ;
Yang, R. ;
Zhang, L. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771
[40]   Selective Laser Melting of Ti-45Nb Alloy [J].
Schwab, Holger ;
Prashanth, Konda Gokuldoss ;
Loeber, Lukas ;
Kuehn, Uta ;
Eckert, Juergen .
METALS, 2015, 5 (02) :686-694