Some generalized numerical radius inequalities involving Kwong functions

被引:4
作者
Bakherad, Mojtaba [1 ]
机构
[1] Univ Sistan & Baluchestan, Fac Math, Dept Math, Zahedan, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2019年 / 48卷 / 04期
关键词
numerical radius; Hadamard product; operator monotone; Kwong function;
D O I
10.15672/HJMS.2018.552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several numerical radius inequalities involving positive semidefinite matrices via the Hadamard product and Kwong functions. Among other inequalities, it is shown that if X is an arbitrary n x n matrix and A, B are positive semidefinite, then omega(H-f,H-g(A)) <= k omega(AX + XA), which is equivalent to omega(H-f,H- g(A,B) +/- H-f,H- g(B, A)) <= k' {omega((A + B}X + X(A + B)) + omega((A - B)X - X(A - B))}, where f and g are two continuous functions on (0, infinity) such that h(t) = f(t)/g(t) is Kwong, k = max{f(lambda)g(lambda)/lambda : lambda is an element of sigma(A)} and k' = max {f(lambda)g(lambda)/lambda : lambda sigma(A) boolean OR sigma(B)}.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 18 条
  • [1] Aghamollaei G, 2015, B IRAN MATH SOC, V41, P889
  • [2] INDUCED NORMS OF THE SCHUR MULTIPLIER OPERATOR
    ANDO, T
    OKUBO, K
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 147 : 181 - 199
  • [3] A CHARACTERISATION OF ANTI-LOWNER FUNCTIONS
    Audenaert, Koenraad M. R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) : 4217 - 4223
  • [4] Bakherad M, 2019, COMPLEX ANAL OPER TH, V13, P1557, DOI 10.1007/s11785-017-0726-9
  • [5] Reverses and variations of Heinz inequality
    Bakherad, Mojtaba
    Moslehian, Mohammad Sal
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10) : 1972 - 1980
  • [6] MORE MATRIX-FORMS OF THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    BHATIA, R
    DAVIS, C
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) : 132 - 136
  • [7] RECENT DEVELOPMENTS OF MATRIX VERSIONS OF THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Fujii, Jun Ichi
    Fujii, Masatoshi
    Seo, Yuki
    Zuo, Hongliang
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (01): : 102 - 117
  • [8] Fujii M, 2012, RECENT ADVANCES IN FINANCIAL ENGINEERING 2011, P43
  • [9] Zhan's inequality on A-G mean inequalities
    Fujii, Masatoshi
    Seo, Yuki
    Zuo, Hongliang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 241 - 251
  • [10] Gustafson K.E., 1997, Numerical Range