Moutard transforms for the conductivity equation

被引:2
作者
Grinevich, P. G. [1 ,2 ]
Novikov, R. G. [3 ,4 ]
机构
[1] LD Landau Inst Theoret Phys, Pr Akad Semenova 1a, Chernogolovka 142432, Russia
[2] Lomonosov Moscow State Univ, Fac Mech & Math, GSP-1,Leninskiye Gory 1,Main Bldg, Moscow 119991, Russia
[3] Ecole Polytech, Ctr Math Appl, CNRS, UMR 7641, F-91128 Palaiseau, France
[4] RAS, IEPT, Moscow 117997, Russia
基金
俄罗斯基础研究基金会;
关键词
Darboux-Moutard transforms; Conductivity equation; Integrability; Generalized analytic functions; GENERALIZED ANALYTIC-FUNCTIONS; 2-DIMENSIONAL DIRAC OPERATORS;
D O I
10.1007/s11005-019-01183-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct Darboux-Moutard-type transforms for the two-dimensional conductivity equation. This result continues our recent studies of Darboux-Moutard-type transforms for generalized analytic functions. In addition, at least, some of the Darboux-Moutard-type transforms of the present work admit direct extension to the conductivity equation in multidimensions. Relations to the Schrodinger equation at zero energy are also shown.
引用
收藏
页码:2209 / 2222
页数:14
相关论文
共 22 条
[1]   Spectral asymptotic analysis of a neutronic diffusion problem [J].
Allaire, G ;
Malige, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :939-944
[2]  
[Anonymous], 2009, Theory of Elasticity
[3]  
[Anonymous], 1986, Theoretical Physics. Hydrodynamics
[4]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[5]   A Boundary Value Problem for Conjugate Conductivity Equations [J].
Chaabi, S. ;
Rigat, S. ;
Wielonsky, F. .
STUDIES IN APPLIED MATHEMATICS, 2016, 137 (03) :328-355
[6]   Generalized Analytic Functions, Moutard-Type Transforms, and Holomorphic Maps [J].
Grinevich, P. G. ;
Novikov, R. G. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (02) :150-152
[7]   Moutard transform approach to generalized analytic functions with contour poles [J].
Grinevich, P. G. ;
Novikov, R. G. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (06) :638-656
[8]   Moutard Transform for Generalized Analytic Functions [J].
Grinevich, P. G. ;
Novikov, R. G. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) :2984-2995
[9]  
Landau L. D., 1984, ELECTRODYNAMICS CONT
[10]   The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space [J].
Matuev, R. M. ;
Taimanov, I. A. .
MATHEMATICAL NOTES, 2016, 100 (5-6) :835-846