The entering of polyethylene terephthalate microplastics into biological wastewater treatment system affects aerobic sludge digestion differently from their direct entering into sludge treatment system

被引:72
作者
Wei, Wei [1 ]
Chen, Xueming [2 ]
Peng, Lai [3 ]
Liu, Yiwen [1 ]
Bao, Teng [1 ]
Ni, Bing-Jie [1 ]
机构
[1] Univ Technol Sydney, Sch Civil & Environm Engn, Ctr Technol Water & Wastewater, Sydney, NSW 2007, Australia
[2] Fuzhou Univ, Coll Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
[3] Wuhan Univ Technol, Hubei Key Lab Mineral Resources Proc & Environm, Luoshi Rd 122, Wuhan 430070, Hubei, Peoples R China
基金
澳大利亚研究理事会;
关键词
Microplastics; aerobic digestion; polyethylene terephthalate; entry paths; waste activated sludge; microbial community; PHTHALATE ACID-ESTERS; ANAEROBIC-DIGESTION; ACTIVATED-SLUDGE; TREATMENT PLANTS; SEWAGE-SLUDGE; TOXICITY; PARTICLES; IMPACT; SIZE; IDENTIFICATION;
D O I
10.1016/j.watres.2020.116731
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The entering of the widespread polyethylene terephthalate (PET) microplastics into biological wastewater treatment system results in their retention in sewage sludge, which inevitably enters the sludge treatment system. However, all previous studies regarding the impact of microplastics on sludge treatment system were conducted by directly adding microplastics to system and focusing on anaerobic sludge digestion, although PET microplastics commonly enter into the biological wastewater treatment system first before sludge being subsequently treated. The potential impact of the microplastics on waste activated sludge (WAS) aerobic digestion is also completely missing. Therefore, herein the influences of PET microplastics with different entry paths on WAS aerobic digestion as well as the key mechanisms involved was firstly explored. Experimental results demonstrated that compared to the control test, the entering of PET microplastics to biological wastewater treatment system inhibited WAS aerobic digestion by 10.9 +/- 0.1% through the decreased hydrolysis, although WAS solubilization during aerobic digestion was improved due to the change of generated WAS characteristics. In contrast, when PET microplastics was directly added to the sludge aerobic digester, there was little impact on solubilization, while the hydrolysis were inhibited seriously, thereby suppressing WAS aerobic digestion more severely by 28.9 +/- 0.1%. Further investigation revealed that PET microplastics reduced the populations of key bacteria (e.g., Saprospiraceae, Chitinophagaceae and Xanthomonadaceae) involved in aerobic digestion via induced oxidative stress or/and releasing toxic chemical. This study provided a more accurate approach to assessing the real situation regarding the influences of PET microplastics on aerobic sludge digestion. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 62 条
[1]  
[Anonymous], 2006, STANDARD METHODS EXA
[2]   Anaerobic digestion in global bio-energy production: Potential and research challenges [J].
Appels, Lise ;
Lauwers, Joost ;
Degreve, Jan ;
Helsen, Lieve ;
Lievens, Bart ;
Willems, Kris ;
Van Impe, Jan ;
Dewil, Raf .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (09) :4295-4301
[3]   Estimation of Hydrolysis Parameters in Full-Scale Anerobic Digesters [J].
Batstone, D. J. ;
Tait, S. ;
Starrenburg, D. .
BIOTECHNOLOGY AND BIOENGINEERING, 2009, 102 (05) :1513-1520
[4]   Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes [J].
Bejgarn, Sofia ;
MacLeod, Matthew ;
Bogdal, Christian ;
Breitholtz, Magnus .
CHEMOSPHERE, 2015, 132 :114-119
[5]   High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory [J].
Bergmann, Melanie ;
Wirzberger, Vanessa ;
Krumpen, Thomas ;
Lorenz, Claudia ;
Primpke, Sebastian ;
Tekman, Mine B. ;
Gerdts, Gunnar .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (19) :11000-11010
[6]   Transport and fate of microplastic particles in wastewater treatment plants [J].
Carr, Steve A. ;
Liu, Jin ;
Tesoro, Arnold G. .
WATER RESEARCH, 2016, 91 :174-182
[7]   Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols [J].
Chen, MY ;
Ike, M ;
Fujita, M .
ENVIRONMENTAL TOXICOLOGY, 2002, 17 (01) :80-86
[8]   The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus helgolandicus [J].
Cole, Matthew ;
Lindeque, Pennie ;
Fileman, Elaine ;
Halsband, Claudia ;
Galloway, Tamara S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (02) :1130-1137
[9]   Microplastics as contaminants in the marine environment: A review [J].
Cole, Matthew ;
Lindeque, Pennie ;
Halsband, Claudia ;
Galloway, Tamara S. .
MARINE POLLUTION BULLETIN, 2011, 62 (12) :2588-2597
[10]   Self-Sustained Nitrite Accumulation at Low pH Greatly Enhances Volatile Solids Destruction and Nitrogen Removal in Aerobic Sludge Digestion [J].
Duan, Haoran ;
Ye, Liu ;
Lu, Xuanyu ;
Batstone, Damien J. ;
Yuan, Zhiguo .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (03) :1225-1234