Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas

被引:0
作者
Bricq, Stephanie [1 ,2 ]
Collet, Christophe [1 ]
Armspach, Jean-Paul [1 ,2 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, Inst Phys Biol ULP IPB, CNRS, UMR 7004, Strasbourg, France
来源
2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3 | 2006年
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new Markovian scheme for MRI segmentation using a priori knowledge obtained from probability maps. Indeed we propose to use both triplet Markov chain and a brain atlas containing prior expectations about the spatial localization of the different tissue classes, to segment the brain in gray matter, white matter and cerebro-spinal fluid in an unsupervised way. Experimental results on real data are included to validate this approach. Comparison with other previously used techniques demonstrates the advantages (robustness, low computational complexity) of this new Markovian segmentation scheme using a probabilistic atlas.
引用
收藏
页码:386 / +
页数:2
相关论文
共 18 条
[1]  
ALZUBI S, 2002, BILDVERARBEITUNG MED, P185
[2]  
[Anonymous], 2002, SPIES INT S REM SENS
[3]  
[Anonymous], 2005, Bayesian data analysis
[4]  
Ashburner J., 2000, NEUROIMAGE
[5]  
ASHBURNER J, 1997, NEUROIMAGE
[6]  
BANDOH Y, 1999, P IEE INT C IM PROC
[7]  
DEMPSTER AP, 1976, ROYAL STAT SOC, P1
[8]   Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields [J].
Fjortoft, R ;
Delignon, Y ;
Pieczynski, W ;
Sigelle, M ;
Tupin, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03) :675-686
[9]  
Lanchantin P, 2004, ADV CONCEPTS INTELLI
[10]   An accurate and efficient Bayesian method for automatic segmentation of brain MRI [J].
Marroquin, JL ;
Vemuri, BC ;
Botello, S ;
Calderon, F ;
Fernandez-Bouzas, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (08) :934-945