Optimization of Intelligent Reflecting Surface Assisted Full-Duplex Relay Networks

被引:63
作者
Abdullah, Zaid [1 ]
Chen, Gaojie [1 ]
Lambotharan, Sangarapillai [2 ]
Chambers, Jonathon A. [1 ]
机构
[1] Univ Leicester, Sch Engn, Leicester LE1 7RU, Leics, England
[2] Loughborough Univ, Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Relays; Optimization; Signal to noise ratio; Linear programming; Interference cancellation; Resource management; Intelligent reflecting surface; full-duplex; max-min optimization; WIRELESS NETWORK;
D O I
10.1109/LWC.2020.3031343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we propose a novel hybrid communication network that utilizes both a Full-Duplex (FD) Decode-and-Forward (DF) relay and an Intelligent Reflecting Surface (IRS) to support data transmission over wireless channels. We design the reflecting coefficients at the IRS to maximize the minimum achievable rate of the two hops for the proposed hybrid network. To that end, we utilize a change-of-variables with Semi-Definite Relaxation (SDR) approach to overcome the non-concave objective function and the non-convex optimization constraints. Our results demonstrate that the proposed hybrid IRS with FD relay scheme is able to achieve a significant performance gain over both the hybrid IRS with Half-Duplex (HD) relay as well as the IRS-only scheme, given that the self-interference at the relay is sufficiently suppressed.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 14 条
[1]   A Hybrid Relay and Intelligent Reflecting Surface Network and Its Ergodic Performance Analysis [J].
Abdullah, Zaid ;
Chen, Gaojie ;
Lambotharan, Sangarapillai ;
Chambers, Jonathon A. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) :1653-1657
[2]   Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? [J].
Bjornson, Emil ;
Ozdogan, Ozgecan ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :244-248
[3]   Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison [J].
Di Renzo, Marco ;
Ntontin, Konstantinos ;
Song, Jian ;
Danufane, Fadil H. ;
Qian, Xuewen ;
Lazarakis, Fotis ;
De Rosny, Julien ;
Dinh-Thuy Phan-Huy ;
Simeone, Osvaldo ;
Zhang, Rui ;
Debbah, Meroaune ;
Lerosey, Geoffroy ;
Fink, Mathias ;
Tretyakov, Sergei ;
Shamai, Shlomo .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 :798-807
[4]   Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends [J].
Huang, Chongwen ;
Hu, Sha ;
Alexandropoulos, George C. ;
Zappone, Alessio ;
Yuen, Chau ;
Zhang, Rui ;
Renzo, Marco Di ;
Debbah, Merouane .
IEEE WIRELESS COMMUNICATIONS, 2020, 27 (05) :118-125
[5]   Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning [J].
Huang, Chongwen ;
Mo, Ronghong ;
Yuen, Chau .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (08) :1839-1850
[6]   Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication [J].
Huang, Chongwen ;
Zappone, Alessio ;
Alexandropoulos, George C. ;
Debbah, Merouane ;
Yuen, Chau .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4157-4170
[7]   Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array [J].
Tan, Xin ;
Sun, Zhi ;
Jornet, Josep M. ;
Patios, Dimitris .
2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
[8]   Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design [J].
Wu, Qingqing ;
Zhang, Rui .
2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
[9]   Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts [J].
Wu, Qingqing ;
Zhang, Rui .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (03) :1838-1851
[10]   Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network [J].
Wu, Qingqing ;
Zhang, Rui .
IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (01) :106-112