Observation estimate for kinetic transport equations by diffusion approximation

被引:16
作者
Bardos, Claude [1 ]
Phung, Kim Dang [2 ]
机构
[1] Univ Paris 07, Lab Jacques Louis Lions, 4 Pl Jussieu,BP187, F-75252 Paris 05, France
[2] Univ Orleans, Lab MAPMO, CNRS UMR 7349, FR CNRS 2964,Federat Denis Poisson, Batiment Math,BP 6759, F-45067 Orleans 2, France
关键词
PARABOLIC EQUATIONS; COEFFICIENTS; CONTROLLABILITY; OPERATORS; INEQUALITIES; INTERFACES; UNIQUENESS; JUMPS; NULL;
D O I
10.1016/j.crma.2017.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the unique continuation property for the neutron transport equation and for a simplified model of the Fokker-Planck equation in a bounded domain with absorbing boundary condition. An observation estimate is derived. It depends on the smallness of the mean free path and the frequency of the velocity average of the initial data. The proof relies on the well-known diffusion approximation under convenience scaling and on the basic properties of this diffusion. Eventually, we propose a direct proof for the observation at one time of parabolic equations. It is based on the analysis of the heat kernel. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:640 / 664
页数:25
相关论文
共 26 条
  • [1] [Anonymous], 2011, P INT C IS INIR PET
  • [2] [Anonymous], 1975, Regional Conference Series in Applied Mathematics
  • [3] [Anonymous], 2006, Applicable Analysis
  • [4] Observability inequalities and measurable sets
    Apraiz, J.
    Escauriaza, L.
    Wang, G.
    Zhang, C.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (11) : 2433 - 2475
  • [5] Diffusion approximation of radiative transfer problems with interfaces
    Bal, G
    Ryzhik, L
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (06) : 1887 - 1912
  • [6] THE NONACCRETIVE RADIATIVE-TRANSFER EQUATIONS - EXISTENCE OF SOLUTIONS AND ROSSELAND APPROXIMATION
    BARDOS, C
    GOLSE, F
    PERTHAME, B
    SENTIS, R
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) : 434 - 460
  • [7] DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE
    BARDOS, C
    SANTOS, R
    SENTIS, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 617 - 649
  • [8] BARDOS C, 1973, ARCH RATION MECH AN, V50, P10
  • [9] Bardos C., 1970, ANN SCI ECOLE NORM S, V3, P185
  • [10] THE DIFFUSION APPROXIMATION FOR THE LINEAR BOLTZMANN EQUATION WITH VANISHING SCATTERING COEFFICIENT
    Bardos, Claude
    Bernard, Etienne
    Golse, Francois
    Sentis, Remi
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (03) : 641 - 671