Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs

被引:191
|
作者
Cheng, Chi-Tung [1 ,2 ]
Ho, Tsung-Ying [3 ,4 ]
Lee, Tao-Yi [5 ]
Chang, Chih-Chen [6 ]
Chou, Ching-Cheng [1 ]
Chen, Chih-Chi [7 ,8 ]
Chung, I-Fang [2 ,9 ,10 ]
Liao, Chien-Hung [1 ,11 ]
机构
[1] Chang Gung Univ, Chang Gung Mem Hosp, Dept Trauma & Emergency Surg, Taoyuan, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei, Taiwan
[3] Chang Gung Univ, Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
[4] Chang Gung Univ, Chang Gung Mem Hosp, Mol Imaging Ctr, Taoyuan, Taiwan
[5] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA
[6] Chang Gung Univ, Chang Gung Mem Hosp, Dept Med Imaging & Intervent, Taoyuan, Taiwan
[7] Chang Gung Univ, Chang Gung Mem Hosp, Dept Rehabil Med, Taoyuan, Taiwan
[8] Chang Gung Univ, Chang Gung Mem Hosp, Dept Phys Med, Taoyuan, Taiwan
[9] Natl Yang Ming Univ, Ctr Syst & Synthet Biol, Taipei, Taiwan
[10] Natl Yang Ming Univ, Prevent Med Res Ctr, Taipei, Taiwan
[11] Chang Gung Mem Hosp, Ctr Artificial Intelligence Med, Taoyuan, Taiwan
关键词
Hip fractures; Neural network (computer); Machine learning; Algorithms; ARTIFICIAL-INTELLIGENCE; OSTEOPOROTIC FRACTURE; MORTALITY; DELAY; IDENTIFICATION; MANAGEMENT; MORBIDITY; TRENDS; MEN;
D O I
10.1007/s00330-019-06167-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To identify the feasibility of using a deep convolutional neural network (DCNN) for the detection and localization of hip fractures on plain frontal pelvic radiographs (PXRs). Summary of background data Hip fracture is a leading worldwide health problem for the elderly. A missed diagnosis of hip fracture on radiography leads to a dismal prognosis. The application of a DCNN to PXRs can potentially improve the accuracy and efficiency of hip fracture diagnosis. Methods A DCNN was pretrained using 25,505 limb radiographs between January 2012 and December 2017. It was retrained using 3605 PXRs between August 2008 and December 2016. The accuracy, sensitivity, false-negative rate, and area under the receiver operating characteristic curve (AUC) were evaluated on 100 independent PXRs acquired during 2017. The authors also used the visualization algorithm gradient-weighted class activation mapping (Grad-CAM) to confirm the validity of the model. Results The algorithm achieved an accuracy of 91%, a sensitivity of 98%, a false-negative rate of 2%, and an AUC of 0.98 for identifying hip fractures. The visualization algorithm showed an accuracy of 95.9% for lesion identification. Conclusions A DCNN not only detected hip fractures on PXRs with a low false-negative rate but also had high accuracy for localizing fracture lesions. The DCNN might be an efficient and economical model to help clinicians make a diagnosis without interrupting the current clinical pathway.
引用
收藏
页码:5469 / 5477
页数:9
相关论文
共 50 条
  • [31] The Application of Design Thinking in Developing a Deep Learning Algorithm for Hip Fracture Detection
    Ouyang, Chun-Hsiang
    Chen, Chih-Chi
    Tee, Yu-San
    Lin, Wei-Cheng
    Kuo, Ling-Wei
    Liao, Chien-An
    Cheng, Chi-Tung
    Liao, Chien-Hung
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [32] Anonymizing Radiographs Using an Object Detection Deep Learning Algorithm
    Khosravi, Bardia
    Mickley, John P.
    Rouzrokh, Pouria
    Taunton, Michael J.
    Larson, A. Noelle
    Erickson, Bradley J.
    Wyles, Cody C.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (06)
  • [33] Predicting intertrochanteric extension of greater trochanter fractures of the hip on plain radiographs
    Arshad, Rizwan
    Riaz, Osman
    Aqil, Adeel
    Bhuskute, Nikhil
    Ankarath, Sudhi
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2017, 48 (03): : 692 - 694
  • [34] Diagnostic accuracy of pelvic radiographs for the detection of traumatic pelvic fractures in the elderly
    Ma, Yuntong
    Mandell, Jacob C.
    Rocha, Tatiana
    Mendicuti, Maria ADuran
    Weaver, Michael J.
    Khurana, Bharti
    EMERGENCY RADIOLOGY, 2022, 29 (06) : 1009 - 1018
  • [35] Diagnostic accuracy of pelvic radiographs for the detection of traumatic pelvic fractures in the elderly
    Yuntong Ma
    Jacob C. Mandell
    Tatiana Rocha
    Maria ADuran Mendicuti
    Michael J. Weaver
    Bharti Khurana
    Emergency Radiology, 2022, 29 : 1009 - 1018
  • [37] Application of Deep Learning Techniques for Detection of Pneumothorax in Chest Radiographs
    Deng, Lawrence Y.
    Lim, Xiang-Yann
    Luo, Tang-Yun
    Lee, Ming-Hsun
    Lin, Tzu-Ching
    SENSORS, 2023, 23 (17)
  • [38] The value of plain radiographs in the prediction of outcome in pelvic fractures treated with embolisation therapy
    Niwa, T
    Takebayashi, S
    Igari, H
    Morimura, N
    Uchida, K
    Sugiyama, M
    Matsubara, S
    BRITISH JOURNAL OF RADIOLOGY, 2000, 73 (873): : 945 - 950
  • [39] Detection, classification, and characterization of proximal humerus fractures on plain radiographs
    Spek, R. W. A.
    Smith, W. J.
    Sverdlov, M.
    Broos, S.
    Zhao, Y.
    Liao, Z.
    Verjans, J. W.
    Prijs, J.
    To, M. -s.
    Aberg, H.
    Chiri, W.
    Ijpma, F. F. A.
    Jadav, B.
    White, J.
    Bain, G. I.
    Jutte, P. C.
    van den Bekerom, M. P. J.
    Jaarsma, R. L.
    Doornberg, J. N.
    BONE & JOINT JOURNAL, 2024, 106B (11): : 1348 - 1360
  • [40] Use of deep learning methods for hand fracture detection from plain hand radiographs
    Ureten, Kemal
    Sevinc, Huseyin Fatih
    Igdeli, Ufuk
    Onay, Aslihan
    Maras, Yuksel
    ULUSAL TRAVMA VE ACIL CERRAHI DERGISI-TURKISH JOURNAL OF TRAUMA & EMERGENCY SURGERY, 2022, 28 (02): : 196 - 201