Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs

被引:191
|
作者
Cheng, Chi-Tung [1 ,2 ]
Ho, Tsung-Ying [3 ,4 ]
Lee, Tao-Yi [5 ]
Chang, Chih-Chen [6 ]
Chou, Ching-Cheng [1 ]
Chen, Chih-Chi [7 ,8 ]
Chung, I-Fang [2 ,9 ,10 ]
Liao, Chien-Hung [1 ,11 ]
机构
[1] Chang Gung Univ, Chang Gung Mem Hosp, Dept Trauma & Emergency Surg, Taoyuan, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei, Taiwan
[3] Chang Gung Univ, Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
[4] Chang Gung Univ, Chang Gung Mem Hosp, Mol Imaging Ctr, Taoyuan, Taiwan
[5] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA
[6] Chang Gung Univ, Chang Gung Mem Hosp, Dept Med Imaging & Intervent, Taoyuan, Taiwan
[7] Chang Gung Univ, Chang Gung Mem Hosp, Dept Rehabil Med, Taoyuan, Taiwan
[8] Chang Gung Univ, Chang Gung Mem Hosp, Dept Phys Med, Taoyuan, Taiwan
[9] Natl Yang Ming Univ, Ctr Syst & Synthet Biol, Taipei, Taiwan
[10] Natl Yang Ming Univ, Prevent Med Res Ctr, Taipei, Taiwan
[11] Chang Gung Mem Hosp, Ctr Artificial Intelligence Med, Taoyuan, Taiwan
关键词
Hip fractures; Neural network (computer); Machine learning; Algorithms; ARTIFICIAL-INTELLIGENCE; OSTEOPOROTIC FRACTURE; MORTALITY; DELAY; IDENTIFICATION; MANAGEMENT; MORBIDITY; TRENDS; MEN;
D O I
10.1007/s00330-019-06167-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To identify the feasibility of using a deep convolutional neural network (DCNN) for the detection and localization of hip fractures on plain frontal pelvic radiographs (PXRs). Summary of background data Hip fracture is a leading worldwide health problem for the elderly. A missed diagnosis of hip fracture on radiography leads to a dismal prognosis. The application of a DCNN to PXRs can potentially improve the accuracy and efficiency of hip fracture diagnosis. Methods A DCNN was pretrained using 25,505 limb radiographs between January 2012 and December 2017. It was retrained using 3605 PXRs between August 2008 and December 2016. The accuracy, sensitivity, false-negative rate, and area under the receiver operating characteristic curve (AUC) were evaluated on 100 independent PXRs acquired during 2017. The authors also used the visualization algorithm gradient-weighted class activation mapping (Grad-CAM) to confirm the validity of the model. Results The algorithm achieved an accuracy of 91%, a sensitivity of 98%, a false-negative rate of 2%, and an AUC of 0.98 for identifying hip fractures. The visualization algorithm showed an accuracy of 95.9% for lesion identification. Conclusions A DCNN not only detected hip fractures on PXRs with a low false-negative rate but also had high accuracy for localizing fracture lesions. The DCNN might be an efficient and economical model to help clinicians make a diagnosis without interrupting the current clinical pathway.
引用
收藏
页码:5469 / 5477
页数:9
相关论文
共 50 条
  • [21] Application of symmetry evaluation to deep learning algorithm in detection of mastoiditis on mastoid radiographs
    Dongjun Choi
    Leonard Sunwoo
    Sung-Hye You
    Kyong Joon Lee
    Inseon Ryoo
    Scientific Reports, 13
  • [22] Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs
    Choi, Jae Won
    Cho, Yeon Jin
    Ha, Ji Young
    Lee, Yun Young
    Koh, Seok Young
    Seo, June Young
    Choi, Young Hun
    Cheon, Jung-Eun
    Phi, Ji Hoon
    Kim, Injoon
    Yang, Jaekwang
    Kim, Woo Sun
    KOREAN JOURNAL OF RADIOLOGY, 2022, 23 (03) : 343 - 354
  • [23] Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle
    Magneli, Martin
    Ling, Petter
    Gislen, Jacob
    Fagrell, Johan
    Demir, Yilmaz
    Arverud, Erica Domeij
    Hallberg, Kristofer
    Salomonsson, Bjoern
    Gordon, Max
    PLOS ONE, 2023, 18 (08):
  • [24] Research article The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs
    Mawatari, Tsubasa
    Hayashida, Yoshiko
    Katsuragawa, Shigehiko
    Yoshimatsu, Yuta
    Hamamura, Toshihiko
    Anai, Kenta
    Ueno, Midori
    Yamaga, Satoru
    Ueda, Issei
    Terasawa, Takashi
    Fujisaki, Akitaka
    Chihara, Chihiro
    Miyagi, Tomoyuki
    Aoki, Takatoshi
    Korogi, Yukunori
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 130
  • [25] DIAGNOSIS OF PELVIC FRACTURES IN PATIENTS WITH ACUTE PELVIC TRAUMA - EFFICACY OF PLAIN RADIOGRAPHS
    RESNIK, CS
    STACKHOUSE, DJ
    SHANMUGANATHAN, K
    YOUNG, JWR
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1992, 158 (01) : 109 - 112
  • [26] Detection of mandibular fractures on panoramic radiographs using deep learning
    Vinayahalingam, Shankeeth
    van Nistelrooij, Niels
    van Ginneken, Bram
    Bressem, Keno
    Troeltzsch, Daniel
    Heiland, Max
    Fluegge, Tabea
    Gaudin, Robert
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] Detection of mandibular fractures on panoramic radiographs using deep learning
    Shankeeth Vinayahalingam
    Niels van Nistelrooij
    Bram van Ginneken
    Keno Bressem
    Daniel Tröltzsch
    Max Heiland
    Tabea Flügge
    Robert Gaudin
    Scientific Reports, 12
  • [28] Accuracy of Radiographs for the Detection of Hip and Pelvic Fractures in Patients Presenting in an Emergency Department Setting
    Kirby, M.
    Spritzer, C.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 192 (05)
  • [29] PREDICTION OF HIP-FRACTURES FROM PELVIC RADIOGRAPHS - THE STUDY OF OSTEOPOROTIC FRACTURES
    GLUER, CC
    CUMMINGS, SR
    PRESSMAN, A
    LI, J
    GLUER, K
    FAULKNER, KG
    GRAMPP, S
    GENANT, HK
    NEVITT, MC
    BLACK, D
    ARNAUD, C
    BROWNER, W
    FAULKNER, K
    FOX, C
    GLUER, C
    HARVEY, S
    JERGAS, M
    PALERMO, L
    SEELEY, D
    STONE, K
    SHERWIN, R
    SCOTT, J
    FOX, K
    LEWIS, J
    GREENBERG, G
    BAHR, M
    TRUSTY, S
    HOHMAN, B
    OLINER, E
    FINAZZO, L
    PAGE, T
    ENSRUD, K
    GRIMM, R
    BELL, C
    MITSON, E
    MICHAEL, D
    JACOBSON, K
    JACKSON, S
    SJOBERG, C
    CAULEY, JA
    KULLER, LH
    HARPER, L
    NASIM, M
    WATSON, N
    MCCUNE, A
    BASHADA, C
    BUCK, L
    GITHENS, A
    MEDVE, D
    RUDOVSKY, S
    JOURNAL OF BONE AND MINERAL RESEARCH, 1994, 9 (05) : 671 - 677
  • [30] Automatic Detection of Mandibular Fractures in Panoramic Radiographs Using Deep Learning
    Son, Dong-Min
    Yoon, Yeong-Ah
    Kwon, Hyuk-Ju
    An, Chang-Hyeon
    Lee, Sung-Hak
    DIAGNOSTICS, 2021, 11 (06)