Existence of local covariant time ordered products of quantum fields in curved spacetime

被引:185
作者
Hollands, S [1 ]
Wald, RM [1 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA
关键词
D O I
10.1007/s00220-002-0719-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the existence of local, covariant time ordered products of local Wick polynomials for a free scalar field in curved spacetime. Our time ordered products satisfy all of the hypotheses of our previous uniqueness theorem, so our construction essentially completes the analysis of the existence, uniqueness, and renormalizability of the perturbative expansion for nonlinear quantum field theories in curved spacetime. As a byproduct of our analysis, we derive a scaling expansion of the time ordered products about the total diagonal that expresses them as a sum of products of polynomials in the curvature times Lorentz invariant distributions, plus a remainder term of arbitrarily low scaling degree.
引用
收藏
页码:309 / 345
页数:37
相关论文
共 20 条
[1]  
BOAS FM, ARXIVHEPTH0001014
[2]   The microlocal spectrum condition and wick polynomials of free fields on curved spacetimes [J].
Brunetti, R ;
Fredenhagen, K ;
Kohler, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) :633-652
[3]   Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds [J].
Brunetti, R ;
Fredenhagen, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :623-661
[4]   FEYNMAN PROPAGATOR IN CURVED SPACETIME - MOMENTUM-SPACE REPRESENTATION [J].
BUNCH, TS ;
PARKER, L .
PHYSICAL REVIEW D, 1979, 20 (10) :2499-2510
[5]   VACUUM EXPECTATION VALUE OF STRESS TENSOR IN AN ARBITRARY CURVED BACKGROUND - COVARIANT POINT-SEPARATION METHOD [J].
CHRISTENSEN, SM .
PHYSICAL REVIEW D, 1976, 14 (10) :2490-2501
[6]   RADIATION DAMPING IN A GRAVITATIONAL FIELD [J].
DEWITT, BS ;
BREHME, RW .
ANNALS OF PHYSICS, 1960, 9 (02) :220-259
[7]   A local (perturbative) construction of observables in gauge theories:: The example of QED [J].
Dütsch, M ;
Fredenhagen, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :71-105
[8]   Algebraic quantum field theory, perturbation theory, and the loop expansion [J].
Dütsch, M ;
Fredenhagen, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (01) :5-30
[9]  
DUTSCH M, IN PRESS FIELDS I CO
[10]  
EPSTEIN H, 1973, ANN I H POINCARE A, V19, P211