Inf-sup condition for the 3-D P2-iso-P1 Taylor-Hood finite element;: application to Maxwell equations

被引:19
作者
Ciarlet, P
Girault, V
机构
[1] ENSTA UMA, F-75739 Paris 15, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
关键词
D O I
10.1016/S1631-073X(02)02564-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the discretization of Maxwell equations, proposed in [3,2,1]. The electromagnetic field and the Lagrange multiplier related to its divergence are approximated numerically by the P-2-iso-P-1 Taylor-Hood Finite Element. Singular test-functions are added when the domain is non-convex, with a non-smooth boundary. The aim of this Note is to establish a discrete inf-sup condition. The result can be applied to the discretization of the velocity-pressure Stokes system [7].
引用
收藏
页码:827 / 832
页数:6
相关论文
共 11 条
[1]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[2]  
Assous F, 1998, RAIRO-MATH MODEL NUM, V32, P359
[3]   The solution to the time-dependent Maxwell equations with charges in a 2D nonsmooth domain [J].
Assous, F ;
Ciarlet, P ;
Garcia, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05) :391-396
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[6]   A COERCIVE BILINEAR FORM FOR MAXWELL EQUATIONS [J].
COSTABEL, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 157 (02) :527-541
[7]  
Girault V., 1986, SPRINGER SERIES COMP
[8]  
GIRAULT V, UNPUB CALCOCO
[9]  
SCOTT LR, 1990, MATH COMPUT, V54, P483, DOI 10.1090/S0025-5718-1990-1011446-7
[10]  
VERFURTH R, 1984, RAIRO-ANAL NUMER-NUM, V18, P175