Quantum walk on the line through potential barriers

被引:6
作者
Wong, Thomas G. [1 ]
机构
[1] Univ Latvia, Fac Comp, Raina Bulv 19, LV-1586 Riga, Latvia
关键词
Quantum walks; Quantum tunneling; Faulty shift; Fourier transform;
D O I
10.1007/s11128-015-1215-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum walks are well known for their ballistic dispersion, traveling circle minus (t) away in t steps, which is quadratically faster than a classical random walk's diffusive spreading. In physical implementations of the walk, however, the particle may need to tunnel through a potential barrier to hop, and a naive calculation suggests that this could eliminate the ballistic transport. We show by explicit calculation, however, that such a loss does not occur. Rather, the circle minus (t) dispersion is retained, with only the coefficient changing, which additionally gives a way to detect and quantify the hopping errors in experiments.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 37 条
[1]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[2]   Quantum walk algorithm for element distinctness [J].
Ambainis, A .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :22-31
[3]   ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER [J].
Ambainis, A. ;
Childs, A. M. ;
Reichardt, B. W. ;
Spalek, R. ;
Zhang, S. .
SIAM JOURNAL ON COMPUTING, 2010, 39 (06) :2513-2530
[4]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[5]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[6]  
Ambainis A, 2015, QUANTUM INF COMPUT, V15, P1365
[7]  
[Anonymous], 2003, P 35 ANN ACM S THEOR, DOI DOI 10.1145/780542.780552
[8]  
[Anonymous], 1998, Cambridge Series in Statistical and Probabilistic Mathematics
[9]   One-Dimensional Continuous-Time Quantum Walks [J].
ben-Avraham, D. ;
Bollt, E. M. ;
Tamon, C. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) :295-308
[10]   Optical Galton board [J].
Bouwmeester, D ;
Marzoli, I ;
Karman, GP ;
Schleich, W ;
Woerdman, JP .
PHYSICAL REVIEW A, 2000, 61 (01) :9