A Stabilized Finite Element Method for the Mixed Wave Equation in an ALE Framework With Application to Diphthong Production
被引:26
作者:
Guasch, Oriol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 2, Barcelona 08022, Catalonia, SpainUniv Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 2, Barcelona 08022, Catalonia, Spain
Guasch, Oriol
[1
]
论文数: 引用数:
h-index:
机构:
Arnela, Marc
[1
]
Codina, Ramon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Jordi Girona 1-3,Edifici C1, ES-08034 Barcelona, Catalonia, SpainUniv Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 2, Barcelona 08022, Catalonia, Spain
Codina, Ramon
[2
]
Espinoza, Hector
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Jordi Girona 1-3,Edifici C1, ES-08034 Barcelona, Catalonia, SpainUniv Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 2, Barcelona 08022, Catalonia, Spain
Espinoza, Hector
[2
]
机构:
[1] Univ Ramon Llull, GTM Grp Recerca Tecnol Media, C Quatre Camins 2, Barcelona 08022, Catalonia, Spain
Working with the wave equation in mixed rather than irreducible form allows one to directly account for both, the acoustic pressure field and the acoustic particle velocity field. Indeed, this becomes the natural option in many problems, such as those involving waves propagating in moving domains, because the equations can easily be set in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Yet, when attempting a standard Galerkin finite element solution (FEM) for them, it turns out that an inf-sup compatibility constraint has to be satisfied, which prevents from using equal interpolations for the approximated acoustic pressure and velocity fields. In this work it is proposed to resort to a subgrid scale stabilization strategy to circumvent this condition and thus facilitate code implementation. As a possible application, we address the generation of diphthongs in voice production.