Electric field control of Neel spin-orbit torque in an antiferromagnet

被引:169
作者
Chen, Xianzhe [1 ]
Zhou, Xiaofeng [1 ]
Cheng, Ran [2 ]
Song, Cheng [1 ]
Zhang, Jia [3 ,4 ]
Wu, Yichuan [3 ,4 ]
Ba, You [5 ,6 ]
Li, Haobo [5 ,6 ]
Sun, Yiming [1 ]
You, Yunfeng [1 ]
Zhao, Yonggang [5 ,6 ]
Pan, Feng [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing, Peoples R China
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan, Hubei, Peoples R China
[5] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing, Peoples R China
[6] Tsinghua Univ, Dept Phys, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41563-019-0424-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electric field control of spin-orbit torque in ferromagnets(1) has been intensively pursued in spintronics to achieve efficient memory and computing devices with ultralow energy consumption. Compared with ferromagnets, antiferromagnets(2,3) have huge potential in high-density information storage because of their ultrafast spin dynamics and vanishingly small stray field(4-7). However, the manipulation of spin-orbit torque in antiferromagnets using electric fields remains elusive. Here we use ferroelastic strain from piezoelectric materials to switch the uniaxial magnetic anisotropy in antiferromagnetic Mn2Au films with an electric field of only a few kilovolts per centimetre at room temperature. Owing to the uniaxial magnetic anisotropy, we observe an asymmetric Neel spin-orbit torque(8,9) in the Mn2Au, which is used to demonstrate an antiferromagnetic ratchet. The asymmetry of the Neel spin-orbit torque and the corresponding antiferromagnetic ratchet can be reversed by the electric field. Our finding sheds light on antiferromagnet-based memories with ultrahigh density and high energy efficiency.
引用
收藏
页码:931 / +
页数:6
相关论文
共 30 条
[1]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]   Easy moment direction and antiferromagnetic domain wall motion in Mn2Au [J].
Barthem, Vitoria M. T. S. ;
Colin, Claire V. ;
Haettel, Richard ;
Dufeu, Didier ;
Givord, Dominique .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 406 :289-292
[3]   Writing and reading antiferromagnetic Mn2Au by Neel spin-orbit torques and large anisotropic magnetoresistance [J].
Bodnar, S. Yu. ;
Smejkal, L. ;
Turek, I. ;
Jungwirth, T. ;
Gomonay, O. ;
Sinova, J. ;
Sapozhnik, A. A. ;
Elmers, H. -J. ;
Klaui, M. ;
Jourdan, M. .
NATURE COMMUNICATIONS, 2018, 9
[4]  
Cai KM, 2017, NAT MATER, V16, P712, DOI [10.1038/nmat4886, 10.1038/NMAT4886]
[5]   Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators [J].
Chen, X. Z. ;
Zarzuela, R. ;
Zhang, J. ;
Song, C. ;
Zhou, X. F. ;
Shi, G. Y. ;
Li, F. ;
Zhou, H. A. ;
Jiang, W. J. ;
Pan, F. ;
Tserkovnyak, Y. .
PHYSICAL REVIEW LETTERS, 2018, 120 (20)
[6]  
Cherifi RO, 2014, NAT MATER, V13, P345, DOI [10.1038/NMAT3870, 10.1038/nmat3870]
[7]   Artificial Brownian motors: Controlling transport on the nanoscale [J].
Haenggi, Peter ;
Marchesoni, Fabio .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :387-442
[8]   Epitaxial Mn2Au thin films for antiferromagnetic spintronics [J].
Jourdan, M. ;
Braeuning, H. ;
Sapozhnik, A. ;
Elmers, H-J ;
Zabel, H. ;
Klaeui, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (38)
[9]  
Jungwirth T, 2016, NAT NANOTECHNOL, V11, P231, DOI [10.1038/nnano.2016.18, 10.1038/NNANO.2016.18]
[10]   Purely antiferromagnetic magnetoelectric random access memory [J].
Kosub, Tobias ;
Kopte, Martin ;
Huehne, Ruben ;
Appel, Patrick ;
Shields, Brendan ;
Maletinsky, Patrick ;
Huebner, Rene ;
Liedke, Maciej Oskar ;
Fassbender, Juergen ;
Schmidt, Oliver G. ;
Makarov, Denys .
NATURE COMMUNICATIONS, 2017, 8