LOCALLY CONVEX PROJECTIVE LIMIT CONES

被引:5
作者
Motallebi, M. R. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, POB 179, Ardebil, Iran
关键词
locally convex cones; projective limits; X-topology;
D O I
10.1515/ms-2016-0231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a family of ordered cones, we define a suitable order to investigate projective limit topologies for cones. Under the strict separation property, the projective limit cone topology is proved to be equivalent to some of the X-topologies embedded on a subcone of the product cone in its topology. Also, we discuss the cones of convex subsets in projective limits; in particular, we show that a cone of convex subsets of the projective limit cone in its topology carries the projective limit of the cones of convex subsets in its components.
引用
收藏
页码:1387 / 1398
页数:12
相关论文
共 7 条
[1]  
[Anonymous], 2009, Lecture Notes in Mathematics
[2]  
KEIMEL K, 1992, LECT NOTES MATH, V1517, pR3
[3]  
Kothe G., 1969, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften
[4]   Duality on locally convex cones [J].
Motallebi, M. R. ;
Saiflu, H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :888-905
[5]   Locally Convex Product and Direct Sum Cones [J].
Motallebi, M. R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (03) :913-927
[6]   Products and Direct Sums in Locally Convex Cones [J].
Motallebi, M. R. ;
Saiflu, H. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04) :783-798
[7]  
Roth, 2005, NZ J MATH, V34, P143