Absolute continuity of the laws of one-dimensional reflected stochastic differential equations involving the maximum process

被引:0
作者
Zhang, Hua [1 ,2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Res Ctr Appl Stat, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute continuity; Reflected stochastic differential equations; Maximum process; Malliavin calculus; Local time;
D O I
10.1016/j.jmaa.2020.124692
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the technique of Malliavin calculus and local time, we establish the absolute continuity of the laws of one-dimensional reflected stochastic differential equations involving the maximum process. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 12 条
[1]  
DonatiMartin C, 1997, B SCI MATH, V121, P405
[2]   Perturbed Skorohod equations and perturbed reflected diffusion processes [J].
Doney, RA ;
Zhang, T .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (01) :107-121
[3]   Absolute continuity for some one-dimensional processes [J].
Fournier, Nicolas ;
Printems, Jacques .
BERNOULLI, 2010, 16 (02) :343-360
[4]   CONVERGENCE FOR STOCHASTIC-INTEGRAL SEQUENCES ON SKOROKHOD D1-SPACES [J].
JAKUBOWSKI, A ;
MEMIN, J ;
PAGES, G .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 81 (01) :111-137
[5]  
LEPINGLE D, 1989, ANN I H POINCARE-PR, V25, P283
[6]   Absolute continuity of the laws of a multi-dimensional stochastic differential equation with coefficients dependent on the maximum [J].
Nakatsu, Tomonori .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (11) :2499-2506
[7]  
Nualart D., 2006, PROBABILITY ITS APPL, V2nd edn
[8]  
Revuz D., 1999, CONTINUOUS MARTINGAL
[9]  
Shigekawa I., 2004, Stochastic Analysis
[10]   Quasilinear stochastic elliptic equations with reflection: the existence of a density [J].
Tindel, S .
BERNOULLI, 1998, 4 (04) :445-459