The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation

被引:117
作者
Shen, Zhichuan [1 ,2 ]
Cheng, Yifeng [1 ,2 ]
Sun, Shuhui [3 ]
Ke, Xi [1 ,2 ]
Liu, Liying [1 ,2 ]
Shi, Zhicong [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Guangdong Engn Technol Res Ctr New Energy Mat & D, Guangzhou, Peoples R China
[3] Inst Natl Rech Sci INRS, Energie Mat & Telecommun Ctr, Quebec City, PQ, Canada
基金
中国国家自然科学基金;
关键词
all‐ solid‐ state lithium batteries; inorganic nanofillers; Li+ transportation; solid polymer composite electrolyte; LITHIUM-ION BATTERIES; IN-SITU SYNTHESIS; RECENT PROGRESS; CONDUCTIVITY ENHANCEMENT; RECENT ADVANCEMENTS; CERAMIC FILLERS; STATE; CONDUCTORS; METAL; OXIDE;
D O I
10.1002/cey2.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Compared with commercial lithium batteries with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) possess the advantages of higher safety, better electrochemical stability, higher energy density, and longer cycle life; therefore, ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices. The design and fabrication of solid-state electrolytes (SSEs) are vital for the future commercialization of ASSLBs. Among various SSEs, solid polymer composite electrolytes (SPCEs) consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs. The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE. In this review, the mechanisms of Li+ transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail. On the basis of the recent progress, the respective contributions of polymer chains, passive ceramic nanofillers, and active ceramic nanofillers in affecting the Li+ transport process of SPCE are reviewed systematically. The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed. Finally, the challenges and future perspectives for developing high-performance SPCE are put forward. This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions.
引用
收藏
页码:482 / 508
页数:27
相关论文
共 140 条
[1]   RETRACTED: Polymer electrolytes: characteristics and peculiarities (Retracted Article) [J].
Ahmad, Shahzada .
IONICS, 2009, 15 (03) :309-321
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Polymer electrolytes for lithium ion batteries: a critical study [J].
Arya, Anil ;
Sharma, A. L. .
IONICS, 2017, 23 (03) :497-540
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[6]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   POLYMER ELECTROLYTES [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (17) :3187-3203
[9]   DISPERSED IONIC CONDUCTORS AND PERCOLATION THEORY [J].
BUNDE, A ;
DIETERICH, W ;
ROMAN, E .
PHYSICAL REVIEW LETTERS, 1985, 55 (01) :5-8
[10]   COMPOSITE POLYMER ELECTROLYTES [J].
CAPUANO, F ;
CROCE, F ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1918-1922