REGULARIZATION METHODS FOR SOLVING THE SPLIT FEASIBILITY PROBLEM WITH MULTIPLE OUTPUT SETS IN HILBERT SPACES

被引:5
作者
Reich, Simeon [1 ]
Tuyen, Truong Minh [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
基金
以色列科学基金会;
关键词
Hilbert space; metric projection; regularization; split feasibility problem; SHRINKING PROJECTION METHOD; ALGORITHMS;
D O I
10.12775/TMNA.2022.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the split feasibility problem with multiple output sets in Hilbert spaces. In order to solve this problem, we introduce several new iterative processes by using the Tikhonov regularization method.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 25 条
[1]  
Alber Y., 2006, Nonlinear Ill Posed Problems of Monotone Type
[2]  
[Anonymous], 1990, Topics in Metric Fixed Point Theory
[3]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[5]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[6]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[7]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[8]  
Censor Y, 1994, Numerical Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[9]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[10]   SHRINKING PROJECTION ALGORITHMS FOR THE SPLIT COMMON NULL POINT PROBLEM [J].
Dadashi, Vahid .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :299-306