Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data

被引:83
作者
Ho, Shu-Peng [1 ]
Zhou, Xinjia [2 ]
Shao, Xi [3 ]
Zhang, Bin [3 ]
Adhikari, Loknath [3 ]
Kireev, Stanislav [2 ]
He, Yuxiang [2 ]
Yoe, James G. [4 ]
Xia-Serafino, Wei [5 ]
Lynch, Erin [3 ]
机构
[1] NOAA, Ctr Satellite Applicat & Res Star, NESDIS, College Pk, MD 20740 USA
[2] Global Sci & Technol Inc, 7855 Walker Dr,Suite 200, Greenbelt, MD 20770 USA
[3] Univ Maryland, Interdisciplinary Ctr, Cooperat Inst Satellite Earth Syst Studies CISESS, Earth Syst Sci, College Pk, MD 20740 USA
[4] NOAA, Natl Weather Serv, Natl Ctr Environm Predict NCEP, 1325 East West Highway, Silver Spring, MD 20910 USA
[5] NOAA, Off Project Planning & Anal, Suite 6200,6th Floor,1335 East West Highway, Silver Spring, MD 20910 USA
关键词
GPS RO; COSMIC-2; neutral atmospheric profiles; satellite and in situ radiosonde observations; long term stability; accuracy; precision; GPS RADIO OCCULTATION; STRUCTURAL UNCERTAINTY; PRECIPITABLE WATER; LOWER STRATOSPHERE; EARTHS ATMOSPHERE; TEMPERATURE; IMPACT; CONSTELLATION; TROPOSPHERE; WEATHER;
D O I
10.3390/rs12244099
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A COSMIC-1/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate-1 and Formosa Satellite Mission 3) follow-on mission, COSMIC-2/FORMOSAT-7, had been successfully launched into low-inclination orbits on 25 June 2019. COSMIC-2 has a significantly increased Signal-to-Noise ratio (SNR) compared to other Radio Occultation (RO) missions. This study summarized the initial assessment of COSMIC-2 data quality conducted by the NOAA (National Oceanic and Atmospheric Administration) Center for Satellite Applications and Research (STAR). We use validated data from other RO missions to quantify the stability of COSMIC-2. In addition, we use the Vaisala RS41 radiosonde observations to assess the accuracy and uncertainty of the COSMIC-2 neutral atmospheric profiles. RS41 is currently the most accurate radiosonde observation system. The COSMIC-2 SNR ranges from 200 v/v to about 2800 v/v. To see if the high SNR COSMIC-2 signals lead to better retrieval results, we separate the COSMIC-2-RS41 comparisons into different SNR groups (i.e., 0-500 v/v group, 500-1000 v/v group, 1000-1500 v/v group, 1500-2000 v/v group, and >2000 v/v group). In general, the COSMIC-2 data quality in terms of stability, precision, accuracy, and uncertainty of the accuracy is very compatible with those from COSMIC-1. Results show that the mean COSMIC-2-RS41 water vapor difference from surface to 5 km altitude for each SNR groups are equal to -1.34 g/kg (0-500 v/v), -1.17 g/kg (500-1000 v/v), -1.33 g/kg (1000-1500 v/v), -0.93 g/kg (1500-2000 v/v), and -1.52 g/kg (>2000 v/v). Except for the >2000 v/v group, the high SNR measurements from COSMIC-2 seem to improve the mean water vapor difference for the higher SNR group slightly (especially for the 1500-2000 v/v group) comparing with those from lower SNR groups.
引用
收藏
页码:1 / 21
页数:22
相关论文
共 64 条
[1]  
Adhikari L., 2020, REMOTE SENS UNPUB
[2]   COSMIC GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model [J].
Alexander, S. P. ;
Tsuda, T. ;
Kawatani, Y. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (10)
[3]   Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions [J].
Alexander, S. P. ;
Tsuda, T. ;
Kawatani, Y. ;
Takahashi, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
[4]   The COSMIC/FORMOSAT-3 Mission: Early Results [J].
Anthes, R. A. ;
Bernhardt, P. A. ;
Chen, Y. ;
Cucurull, L. ;
Dymond, K. F. ;
Ector, D. ;
Healy, S. B. ;
Ho, S. -P. ;
Hunt, D. C. ;
Kuo, Y. -H. ;
Liu, H. ;
Manning, K. ;
Mccormick, C. ;
Meehan, T. K. ;
Randel, W. J. ;
Rocken, C. ;
Schreiner, W. S. ;
Sokolovskiy, S. V. ;
Syndergaard, S. ;
Thompson, D. C. ;
Trenberth, K. E. ;
Wee, T. -K. ;
Yen, N. L. ;
Zeng, Z. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2008, 89 (03) :313-333
[5]   Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather [J].
Anthes, R. A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (06) :1077-1103
[6]   Lower troposphere refractivity bias in GPS occultation retrievals [J].
Ao, CO ;
Meehan, TK ;
Hajj, GA ;
Mannucci, AJ ;
Beyerle, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D18)
[7]   Impact of the assimilation of CHAMP refractivity profiles on environment Canada global forecasts [J].
Aparicio, Josep M. ;
Deblonde, Godelieve .
MONTHLY WEATHER REVIEW, 2008, 136 (01) :257-275
[8]   GNSS Radio Occultation Constellation Observing System Experiments [J].
Bauer, Peter ;
Radnoti, Gabor ;
Healy, Sean ;
Cardinali, Carla .
MONTHLY WEATHER REVIEW, 2014, 142 (02) :555-572
[9]   Thermal structure of intense convective clouds derived from GPS radio occultations [J].
Biondi, R. ;
Randel, W. J. ;
Ho, S. -P. ;
Neubert, T. ;
Syndergaard, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (12) :5309-5318
[10]   Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements [J].
Biondi, Riccardo ;
Ho, Shu-Peng ;
Randel, William ;
Syndergaard, Stig ;
Neubert, Torsten .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5247-5259