Effects of experimental small-scale cockle (Cerastoderma edule L.) fishing on ecosystem function

被引:20
作者
Cesar, Christopher P. [1 ]
Frid, Chris L. J. [1 ]
机构
[1] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England
来源
MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE | 2009年 / 30卷
关键词
Biological traits analysis; ecological function; fishing disturbance; intertidal assemblages; macrofauna; redundancy hypothesis; UK; NW MEDITERRANEAN SEA; MARINE SEDIMENT; TRAWLING DISTURBANCE; BENTHIC MACROINVERTEBRATES; SPECIES ABUNDANCE; ORGANIC-MATTER; WADDEN SEA; COMMUNITY; BIODIVERSITY; DIVERSITY;
D O I
10.1111/j.1439-0485.2009.00305.x
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The cockle Cerastoderma edule L. occurs at commercially exploited densities within both species-poor and species-rich assemblages, dominating the faunal biomass and potentially acting as a key contributor to a number of ecological functions. The questions considered were: Is the delivery of ecological functions affected by the removal of C. edule? Does the biodiversity of the affected assemblage affect the extent to which it is altered? To explore these questions, adult cockles were removed from experimental plots at two shores in the North-West of England: a species-poor shore at Warton Sands, Morecambe Bay, and a more diverse shore at Thurstaston, Dee estuary. Impacts on the functioning of the systems were determined during a 4-month study in summer 2007 by direct measurements of benthic primary production, organic matter content and sediment granulometry, and by indirect analyses using Biological Traits Analysis. Removal of adult cockles led to significant changes in faunal assemblage composition and in the distribution of biological traits, with increased biodiversity and an increased prevalence of traits relating to opportunistic taxa observed following the removal of C. edule. These changes occurred at both study sites and hence were independent of the initial biodiversity of the assemblages. Sediment granulometry was significantly affected; however, surface chlorophyll and organic matter were not affected. This implies a minimal impact on these functions and a high degree of functional redundancy within the macrofauna. The implications of these findings and future areas of research are discussed.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 91 条
[2]  
Anderson M., 2005, PERMANOVA FORTRAN CO, P24
[3]   A new method for non-parametric multivariate analysis of variance [J].
Anderson, MJ .
AUSTRAL ECOLOGY, 2001, 26 (01) :32-46
[4]   LABORATORY STUDIES ON LARVAL GROWTH OF POLYDORA-LIGNI, POLYDORA-CILIATA, AND PYGOSPIO-ELEGANS (POLYCHAETA, SPIONIDAE) [J].
ANGER, K ;
ANGER, V ;
HAGMEIER, E .
HELGOLANDER MEERESUNTERSUCHUNGEN, 1986, 40 (04) :377-395
[5]  
Attrill MartinJ., 1998, A Rehabilitated Estuarine Ecosystem: The Environmentand Ecology of the Thames Estuary
[6]   Microbial control of oceanic carbon flux: The plot thickens [J].
Azam, F .
SCIENCE, 1998, 280 (5364) :694-696
[7]  
Azam F., 1993, MICROB ECOL, V28, P167
[8]   Annual cockle Cerastoderma edule production in the Wadden Sea usually fails to sustain both wintering birds and a commercial fishery [J].
Beukema, JJ ;
Dekker, R .
MARINE ECOLOGY PROGRESS SERIES, 2006, 309 :189-204
[9]  
Bolam SG, 2002, ECOL MONOGR, V72, P599, DOI 10.1890/0012-9615(2002)072[0599:DBAEPI]2.0.CO
[10]  
2