Direct visualization of 2-butanol adsorption and dissociation on TiO2(110)

被引:57
作者
Zhang, Zhenrong
Bondarchuk, Oleksandr
Kay, Bruce D.
White, J. M. [1 ]
Dohnalek, Zdenck
机构
[1] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA
[3] Univ Texas, Dept Chem & Biochem, Ctr Mat Chem, Austin, TX 78712 USA
关键词
D O I
10.1021/jp067461c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-resolution scanning tunneling microscopy (STM) images of identical regions of a TiO2(010) surface were gathered before and after controlled doses of 2-butanol (CH3CH2CH(OH)CH3) at ambient temperature (similar to 300 K). When dosing is initiated, 2-butanol preferentially adsorbs at bridge-bonded oxygen vacancy (BBOV) sites and dissociates via O-H, not C-O, bond scission to form paired 2-butoxy and hydroxyl species evidenced by two local maxima in STM line profiles. As the dose increases, but before all the BBOV's are occupied, there is direct STM evidence of hydrogen hopping of the hydroxyl to an adjacent oxygen anion row. This process is facilitated by species bound to 5-coordinate Ti4+ rows, presumably undissociated 2-butanol, that hop slowly on the STM imaging time scale. The carbon backbones of these mobile species are centered over the Ti4+ rows with a preference for lying parallel to these rows. On the other hand, the carbon backbones of the 2-butoxy species that fill BBOV's are centered over the O2- rows and prefer an orientation perpendicular to these rows. As the oxygen vacancy concentration increases from 0.4 to 11% and 2-butanol is dosed, the ratio of mobile Ti4+-bound 2-butanol to stationary BBOV-bound 2-butoxy species decreases for doses that do not fill all the BBOV's.
引用
收藏
页码:3021 / 3027
页数:7
相关论文
共 22 条
[1]   Oxygen vacancy promoting catalytic dehydration of formic acid on TiO2(110) by in situ scanning tunneling microscopic observation [J].
Aizawa, M ;
Morikawa, Y ;
Namai, Y ;
Morikawa, H ;
Iwasawa, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (40) :18831-18838
[2]   Direct visualization of defect-mediated dissociation of water on TiO2(110) [J].
Bikondoa, O ;
Pang, CL ;
Ithnin, R ;
Muryn, CA ;
Onishi, H ;
Thornton, G .
NATURE MATERIALS, 2006, 5 (03) :189-192
[3]   Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO2 [J].
Brinkley, D ;
Engel, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (42) :9836-9841
[4]   STUDY OF INTERACTION OF ALIPHATIC-ALCOHOLS WITH TIO2 .2. MECHANISM OF ALCOHOL DEHYDRATION ON ANATASE [J].
CARRIZOSA, I ;
MUNUERA, G .
JOURNAL OF CATALYSIS, 1977, 49 (02) :189-200
[5]   STUDY OF INTERACTION OF ALCOHOLS WITH TIO2 .1. DECOMPOSITION OF ETHANOL, 2-PROPANOL, AND TERT-BUTANOL ON ANATASE [J].
CARRIZOSA, I ;
MUNUERA, G .
JOURNAL OF CATALYSIS, 1977, 49 (02) :174-188
[6]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[7]   Physisorption of N2, O2, and CO on fully oxidized TiO2(110) [J].
Dohnálek, Z ;
Kim, J ;
Bondarchuk, O ;
White, JM ;
Kay, BD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6229-6235
[8]   Role of defects in the adsorption of aliphatic alcohols on the TiO2(110) surface [J].
Farfan-Arribas, E ;
Madix, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (41) :10680-10692
[9]   Decomposition and protonation of surface ethoxys on TiO2(110) [J].
Gamble, L ;
Jung, LS ;
Campbell, CT .
SURFACE SCIENCE, 1996, 348 (1-2) :1-16
[10]   Propan-2-ol transformation on simple metal oxides TiO2, ZrO2 and CeO2 [J].
Haffad, D ;
Chambellan, A ;
Lavalley, JC .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2001, 168 (1-2) :153-164