Equilibrium structure of a bidimensional asymmetric city

被引:19
作者
Carlier, G. [1 ]
Ekeland, I.
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris, France
[2] Univ British Columbia, Canc Res Chair Math Econ, Dept Math, Vancouver, BC V5Z 1M9, Canada
关键词
spatial equilibrium; optimal transportation; Kantorovich duality;
D O I
10.1016/j.nonrwa.2006.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of equilibrium configurations of a bidimensional, non-symmetric city with an arbitrary boundary and an arbitrary transportation cost. The (non-constant) densities of land used for business and for residence are equilibrium outcomes. The proof relies on the theory of optimal transportation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:725 / 748
页数:24
相关论文
共 16 条
[1]  
[Anonymous], 1999, SPATIAL EC CITIES RE
[2]  
[Anonymous], **NON-TRADITIONAL**
[3]  
[Anonymous], 2002, EC AGGLOMERATION
[4]  
[Anonymous], 1992, MEASURE THEORY FINE
[5]   Production externalities and urban configuration [J].
Berliant, M ;
Peng, SK ;
Wang, P .
JOURNAL OF ECONOMIC THEORY, 2002, 104 (02) :275-303
[7]  
CARLIER G, 2003, ADV MATH EC, V5, P1
[8]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[9]   MULTIPLE EQUILIBRIA AND STRUCTURAL TRANSITION OF NON-MONOCENTRIC URBAN CONFIGURATIONS [J].
FUJITA, M ;
OGAWA, H .
REGIONAL SCIENCE AND URBAN ECONOMICS, 1982, 12 (02) :161-196
[10]  
Fujita M., 1989, URBAN EC THEORY