Target Cultivation and Financing Parameters for Sustainable Production of Fuel and Feed from Microalgae

被引:48
作者
Gerber, Leda N. [1 ,2 ]
Tester, Jefferson W. [1 ,2 ]
Beal, Colin M. [3 ]
Huntley, Mark E. [4 ]
Sills, Deborah L. [1 ,2 ,5 ]
机构
[1] Cornell Univ, Dept Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Cornell Energy Inst, Ithaca, NY 14853 USA
[3] B&D Engn & Consulting LLC, Lander Wyoming, WY USA
[4] Duke Univ, Nicholas Sch Environm, Marine Lab, Durham, NC 27708 USA
[5] Bucknell Univ, Dept Civil & Environm Engn, Lewisburg, PA 17837 USA
基金
美国国家科学基金会; 美国能源部;
关键词
ALGAL BIOFUEL PRODUCTION; LIFE-CYCLE ASSESSMENT; HYDROTHERMAL LIQUEFACTION; UNITED-STATES; TECHNOECONOMIC ANALYSIS; BIODIESEL PRODUCTION; AVAILABILITY; SCALE; OIL; FEEDSTOCKS;
D O I
10.1021/acs.est.5b05381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Production of economically competitive and environmentally sustainable algal biofuel faces technical challenges that are subject to high uncertainties. Here we identify target values for algal productivity and financing conditions required to achieve a biocrude selling price of $5 per gallon and beneficial environmental impacts. A modeling framework combining process design, techno-economic analysis, life cycle assessment, and uncertainty analysis was applied to two conversion pathways: (1) "fuel only (HTL)", using hydrothermal liquefaction to produce biocrude, heat and power, and (2) "fuel and feed", using wet extraction to produce biocrude and lipid-extracted algae, which can substitute components of animal and aqua feeds. Our results suggest that with supporting policy incentives, the "fuel and feed" scenario will likely achieve a biocrude selling price of less than $5 per gallon at a productivity of 39 g/m(2)/day, versus 47 g/m(2)/day for the "fuel only (HTL)" scenario. Furthermore, if lipid-extracted algae are used to substitute fishmeal, the process has a 50% probability of reaching $5 per gallon with a base case productivity of 23 g/m(2)/day. Scenarios with improved economics were associated with beneficial environmental impacts for climate change, ecosystem quality, and resource depletion, but not for human health..
引用
收藏
页码:3333 / 3341
页数:9
相关论文
共 57 条
[41]   A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales [J].
Rogers, Jonathan N. ;
Rosenberg, Julian N. ;
Guzman, Bernardo J. ;
Oh, Victor H. ;
Mimbela, Luz Elena ;
Ghassemi, Abbas ;
Betenbaugh, Michael J. ;
Oyler, George A. ;
Donohue, Marc D. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2014, 4 :76-88
[42]   Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel Production [J].
Sills, Deborah L. ;
Paramita, Vidia ;
Franke, Michael J. ;
Johnson, Michael C. ;
Akabas, Tal M. ;
Greene, Charles H. ;
Testert, Jefferson W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (02) :687-694
[43]  
(SO) Food and Agriculture Organization, MONTHL INT PRIC IND
[44]  
Tester J.W., 2015, P WORLD GEOTH C 2015
[45]   A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels [J].
Thilakaratne, Rajeeva ;
Wright, Mark M. ;
Brown, Robert C. .
FUEL, 2014, 128 :104-112
[46]   Catalytic upgrading of biorefinery oil from micro-algae [J].
Tran, N. H. ;
Bartlett, J. R. ;
Kannangara, G. S. K. ;
Milev, A. S. ;
Volk, H. ;
Wilson, M. A. .
FUEL, 2010, 89 (02) :265-274
[47]   Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth [J].
Trentacoste, Emily M. ;
Shrestha, Roshan P. ;
Smith, Sarah R. ;
Gle, Corine ;
Hartmann, Aaron C. ;
Hildebrand, Mark ;
Gerwick, William H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) :19748-19753
[48]  
Turton R, 1998, CHEM-ING-TECH, V71, P1319
[49]  
Ulrich G.-D., 1996, AICHE J, V30, P1036
[50]  
US Energy Information Administration, SPOT PRIC CRUD OIL P