Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice

被引:71
作者
Fu, Jia [1 ,2 ]
Wei, Chengguo [1 ]
Zhang, Weijia [1 ]
Schlondorff, Detlef [1 ]
Wu, Jinshan [1 ]
Cai, Minchao [1 ]
He, Wu [3 ]
Baron, Margaret H. [4 ]
Chuang, Peter Y. [1 ]
Liu, Zhihong [2 ]
He, John Cijiang [1 ,5 ]
Lee, Kyung [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Med, Div Nephrol, New York, NY 10029 USA
[2] Nanjing Univ, Jinling Hosp, Sch Med, Natl Clin Res Ctr Kidney Dis, Nanjing 210002, Jiangsu, Peoples R China
[3] Icahn Sch Med Mt Sinai, Flow Cytometry Shared Resource Facil, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Med, Div Hematol & Med Oncol, New York, NY 10029 USA
[5] James J Peters VA Med Ctr Bronx, Renal Program, New York, NY USA
基金
美国国家卫生研究院;
关键词
diabetic nephropathy; endothelial nitric oxide synthase; glomerular endothelial cells; transcriptional profiling; MOUSE; ANGIOGENESIS; VEGF; NEPHROPATHY; GPR56; PROGRESSION; RECEPTOR; GROWTH;
D O I
10.1016/j.kint.2018.02.028
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS(-/-)) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOSL/L than in STZ-WT GECs. Additionally, genes in STZ-eNOS(-/-) GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS(-/-) mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS(-/-) GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
引用
收藏
页码:326 / 345
页数:20
相关论文
共 50 条
[1]   Mouse models of diabetic nephropathy [J].
Alpers, Charles E. ;
Hudkins, Kelly L. .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2011, 20 (03) :278-284
[2]   VE-cadherin-Cre-recombinase transgenic mouse: A tool for lineage analysis and gene deletion in endothelial cells [J].
Alva, JA ;
Zovein, AC ;
Monvoisin, A ;
Murphy, T ;
Salazar, A ;
Harvey, NL ;
Carmeliet, P ;
Iruela-Arispe, ML .
DEVELOPMENTAL DYNAMICS, 2006, 235 (03) :759-767
[3]   In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract [J].
Arnaoutova, Irina ;
Kleinman, Hynda K. .
NATURE PROTOCOLS, 2010, 5 (04) :628-635
[4]   Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57 [J].
Bak, Mads ;
Boonen, Susanne E. ;
Dahl, Christina ;
Hahnemann, Johanne M. D. ;
Mackay, Deborah J. D. G. ;
Tumer, Zeynep ;
Gronskov, Karen ;
Temple, I. Karen ;
Guldberg, Per ;
Tommerup, Niels .
BMC MEDICAL GENETICS, 2016, 17
[5]   Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks [J].
Boerries, Melanie ;
Grahammer, Florian ;
Eiselein, Sven ;
Buck, Moritz ;
Meyer, Charlotte ;
Goedel, Markus ;
Bechtel, Wibke ;
Zschiedrich, Stefan ;
Pfeifer, Dietmar ;
Laloe, Denis ;
Arrondel, Christelle ;
Goncalves, Sara ;
Krueger, Marcus ;
Harvey, Scott J. ;
Busch, Hauke ;
Dengjel, Joern ;
Huber, Tobias B. .
KIDNEY INTERNATIONAL, 2013, 83 (06) :1052-1064
[6]   Mouse Models of Diabetic Nephropathy [J].
Brosius, Frank C., III ;
Alpers, Charles E. ;
Bottinger, Erwin P. ;
Breyer, Matthew D. ;
Coffman, Thomas M. ;
Gurley, Susan B. ;
Harris, Raymond C. ;
Kakoki, Masao ;
Kretzler, Matthias ;
Leiter, Edward H. ;
Levi, Moshe ;
McIndoe, Richard A. ;
Sharma, Kumar ;
Smithies, Oliver ;
Susztak, Katalin ;
Takahashi, Nobuyuki ;
Takahashi, Takamune .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2009, 20 (12) :2503-2512
[7]   Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease [J].
Brunskill, Eric W. ;
Potter, S. Steven .
PLOS ONE, 2010, 5 (08)
[8]   Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool [J].
Chen, Edward Y. ;
Tan, Christopher M. ;
Kou, Yan ;
Duan, Qiaonan ;
Wang, Zichen ;
Meirelles, Gabriela Vaz ;
Clark, Neil R. ;
Ma'ayan, Avi .
BMC BIOINFORMATICS, 2013, 14
[9]   Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease [J].
Chen, Jing ;
Zhang, Xiaoyan ;
Zhang, Han ;
Liu, Tongqiang ;
Zhang, Hui ;
Teng, Jie ;
Ji, Jun ;
Ding, Xiaoqiang .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2016, 12 (10) :1236-1246
[10]  
Collins A, 2014, AM J KIDNEY DIS, V63, pE1