The RANK/RANKL/OPG triad in cancer-induced bone diseases

被引:178
作者
Dougall, William C. [1 ]
Chaisson, Michelle [1 ]
机构
[1] Amgen Washington, Dept Canc Biol, Seattle, WA 98119 USA
关键词
receptor activator of NF-kappa B (RANK); RANKL; osteoprotegerin (OPG); osteoclasts; bone metastasis;
D O I
10.1007/s10555-006-9021-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The maintenance of skeletal integrity in a healthy individual requires a balanced regulation of the processes of bone formation, mediated by osteoblasts, and bone resorption, mediated by osteoclasts. This balanced process of bone remodeling becomes co-opted in the skeleton by tumor cells and this dramatically accelerates the process of remodeling and disrupts the normal equilibrium resulting in a spectrum of osteolytic to osteoblastic bone lesions. Certain tumor types, such as breast and prostate, frequently metastasize to the bone. It is now widely understood that the molecular triad-receptor activator of NF-kappa B ligand (RANKL), its receptor RANK, and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG)-play direct and essential roles in the formation, function, and survival of osteoclasts. Osteoclastic bone resorption contributes to the majority of skeletal sequelae, or skeletal-related events (SREs), in patients with bone metastases. In addition, osteoclastic bone resorption also contributes to the establishment of tumors in the skeleton. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition may not only provide a beneficial treatment for skeletal complications of malignancy, but may also prevent bone metastases. In this review, we will first describe the operative role of osteoclasts and the RANK/RANKL/OPG triad in the pathophysiology of cancer-induced bone diseases, specifically solid tumor metastases to the bone. Secondly, we will describe a therapeutic approach that specifically targets the RANKL molecule.
引用
收藏
页码:541 / 549
页数:9
相关论文
共 85 条
[1]   Osteoclastogenesis inhibitory factor suppresses osteoclast survival by intetfering in the interaction of stromal cells with osteoclast [J].
Akatsu, T ;
Murakami, T ;
Nishikawa, M ;
Ono, K ;
Shinomiya, N ;
Tsuda, E ;
Mochizuki, S ;
Yamaguchi, K ;
Kinosaki, M ;
Higashio, K ;
Yamamoto, M ;
Motoyoshi, K ;
Nagata, N .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 250 (02) :229-234
[2]   A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function [J].
Anderson, DM ;
Maraskovsky, E ;
Billingsley, WL ;
Dougall, WC ;
Tometsko, ME ;
Roux, ER ;
Teepe, MC ;
DuBose, RF ;
Cosman, D ;
Galibert, L .
NATURE, 1997, 390 (6656) :175-179
[3]  
Atkinson JE, 2003, J BONE MINER RES, V18, pS96
[4]   Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease [J].
Bendre, MS ;
Montague, DC ;
Peery, T ;
Akel, NS ;
Gaddy, D ;
Suva, LJ .
BONE, 2003, 33 (01) :28-37
[5]  
Bhatia P, 2005, CLIN CANCER RES, V11, P162
[6]   Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis [J].
Blair, JM ;
Zhou, H ;
Seibel, MJ ;
Dunstan, CR .
NATURE CLINICAL PRACTICE ONCOLOGY, 2006, 3 (01) :41-49
[7]  
Body JJ, 2004, J BONE MINER RES, V19, P1593
[8]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342
[9]   Osteoprotegerin and rank ligand expression in prostate cancer [J].
Brown, JM ;
Corey, E ;
Lee, ZD ;
True, LD ;
Yun, TJ ;
Tondravi, M ;
Vessella, RL .
UROLOGY, 2001, 57 (04) :611-616
[10]   osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification [J].
Bucay, N ;
Sarosi, I ;
Dunstan, CR ;
Morony, S ;
Tarpley, J ;
Capparelli, C ;
Scully, S ;
Tan, HL ;
Xu, WL ;
Lacey, DL ;
Boyle, WJ ;
Simonet, WS .
GENES & DEVELOPMENT, 1998, 12 (09) :1260-1268