Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance

被引:133
|
作者
Lin, Tsao-Jen [1 ]
Huang, Kuang-Tse [1 ]
Liu, Chia-Yu [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 621, Taiwan
关键词
localized surface plasmon resonance; biosensor; gold nanoparticle; organophosphorous pesticide; acetylcholinesterase;
D O I
10.1016/j.bios.2006.05.007
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Liquid and gas chromatography are commonly used to measure organophosphorus pesticides. However, these methods are relatively time consuming and require a tedious sample pretreatment. Here, we applied the localized surface plasmon resonance (LSPR) of gold nanoparticles covalently coupled with acetylcholinesterase (AChE) to create a biosensor for detecting an example of serial signals responding to paraoxon in the range of 1-100 ppb by an AChE modified LSPR sensor immersing in a 0.05 mM ACh solution. The underlying mechanism is that paraoxon prevents acetylcholine chloride (ACh) reacting with AChE by destroying the OH bond of serine in AChE. We found that the AChE modified LSPR sensors prepared by incubation with 12.5 mU/mL of AChE in phosphate buffer solution at pH 8.5 room temperature for 14 h have the best linear inhibition response with a 0.234 ppb limit of paraoxon detection. A 14% of inhibition on the sensor corresponds to the change of paraoxon concentration from 1 to 100 ppb. The sensor remained 94% of its original activity after six cycles of inhibition with 500 ppb paraoxon followed with reactivation of AChE by 0.5 mM 2-pyriding-aldoxime methoiodide (2-PAM). In addition, the sensor retains activity and gives reproducible results after storage in dry state at 4 degrees C for 60 days. In conclusion, we demonstrated that the AChE modified LSPR sensors can be used to determine the concentration of paraoxon biosensor with high sensitive and stable characteristics. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:513 / 518
页数:6
相关论文
共 50 条
  • [1] Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol
    Kreuzer, Mark P.
    Quidant, Romain
    Salvador, J. -Pablo
    Marco, M. -Pilar
    Badenes, Goncal
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 391 (05) : 1813 - 1820
  • [2] Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol
    Mark P. Kreuzer
    Romain Quidant
    J.-Pablo Salvador
    M.-Pilar Marco
    Gonçal Badenes
    Analytical and Bioanalytical Chemistry, 2008, 391 : 1813 - 1820
  • [3] Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance
    Lin, Tsao-Jen
    Chung, Mon-Fu
    BIOSENSORS & BIOELECTRONICS, 2009, 24 (05) : 1213 - 1218
  • [4] Comparative analysis of response modes for gold nanoparticle biosensor based on localized surface plasmon resonance
    Lopatynskyi, A.
    Lopatynska, O.
    Chegel, V.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2011, 14 (01) : 114 - 121
  • [5] An optical biosensor based on localized surface plasmon resonance of silver nanostructured films
    Arai, T.
    Kumar, P. K. R.
    Rockstuhl, C.
    Awazu, K.
    Tominaga, J.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (07): : 699 - 703
  • [6] Wavelength-based localized surface plasmon resonance optical fiber biosensor
    Cao, Jie
    Tu, Minh Hiue
    Sun, Tong
    Grattan, Kenneth T. V.
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 181 : 611 - 619
  • [7] Localized surface plasmon resonance biosensor integrated with microfluidic chip
    Chengjun Huang
    Kristien Bonroy
    Gunter Reekmans
    Wim Laureyn
    Katarina Verhaegen
    Iwijn De Vlaminck
    Liesbet Lagae
    Gustaaf Borghs
    Biomedical Microdevices, 2009, 11 : 893 - 901
  • [8] Localized surface plasmon resonance biosensor integrated with microfluidic chip
    Huang, Chengjun
    Bonroy, Kristien
    Reekmans, Gunter
    Laureyn, Wim
    Verhaegen, Katarina
    De Vlaminck, Iwijn
    Lagae, Liesbet
    Borghs, Gustaaf
    BIOMEDICAL MICRODEVICES, 2009, 11 (04) : 893 - 901
  • [9] Detection of p53 gene mutation by using a novel biosensor based on localized surface plasmon resonance
    Duan, R. Q.
    Yuan, J. L.
    Yang, H.
    Luo, X. G.
    Xi, M. R.
    NEOPLASMA, 2012, 59 (03) : 348 - 353
  • [10] A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance
    Xu, Yichao
    Xiong, Meng
    Yan, Hui
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 336