A QUASI-NONLOCAL COUPLING METHOD FOR NONLOCAL AND LOCAL DIFFUSION MODELS

被引:24
作者
Du, Qiang [1 ]
Li, Xingjie Helen [2 ]
Lu, Jianfeng [3 ]
Tian, Xiaochuan [4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[3] Duke Univ, Dept Phys, Dept Chem, Dept Math, Durham, NC 27708 USA
[4] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
nonlocal diffusion; quasi-nonlocal coupling; geometric reconstruction; modeling error estimate; well-posedness; physics preserving; 2-BODY POTENTIALS; CONTINUUM MODELS; APPROXIMATIONS; PERIDYNAMICS; DYNAMICS; PARTICLE; HORIZON;
D O I
10.1137/17M1124012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the idea of "geometric reconstruction" to couple a nonlocal diffusion model directly with the classical local diffusion in one dimensional space. This new coupling framework removes interfacial inconsistency, ensures the flux balance, and satisfies energy conservation as well as the maximum principle, whereas none of existing coupling methods for nonlocalto-local coupling satisfies all of these properties. We establish the well-posedness and provide the stability analysis of the coupling method. We investigate the difference to the local limiting problem in terms of the nonlocal interaction range. Furthermore, we propose a first order finite difference numerical discretization and perform several numerical tests to confirm the theoretical findings. In particular, we show that the resulting numerical result is free of artifacts near the boundary of the domain where a classical local boundary condition is used, together with a coupled fully nonlocal model in the interior of the domain.
引用
收藏
页码:1386 / 1404
页数:19
相关论文
共 41 条
[1]  
[Anonymous], SIAM NEWS
[2]   Peridynamics for multiscale materials modeling [J].
Askari, E. ;
Bobaru, F. ;
Lehoucq, R. B. ;
Parks, M. L. ;
Silling, S. A. ;
Weckner, O. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[3]   An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions [J].
Bates, PW ;
Chmaj, A .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1119-1139
[4]   The peridynamic formulation for transient heat conduction [J].
Bobaru, Florin ;
Duangpanya, Monchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (19-20) :4047-4059
[5]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[6]   A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions [J].
D'Elia, Marta ;
Perego, Mauro ;
Bochev, Pavel ;
Littlewood, David .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2218-2230
[7]  
Du Q., 2010, ESAIM-MATH MODEL NUM, V45, P217
[8]   Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients [J].
Du, Qiang ;
Tao, Yunzhe ;
Tian, Xiaochuan ;
Yang, Jiang .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 310 :605-627
[9]   Integral approximations to classical diffusion and smoothed particle hydrodynamics [J].
Du, Qiang ;
Lehoucq, R. B. ;
Tartakovsky, A. M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 286 :216-229
[10]   A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS [J].
Du, Qiang ;
Gunzburger, Max ;
Lehoucq, R. B. ;
Zhou, Kun .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (03) :493-540