A classification of cubic bicirculants

被引:50
作者
Pisanski, Tomaz [1 ]
机构
[1] Univ Ljubljana, IMFM, Ljubljana 61000, Slovenia
关键词
bicirculant; covering graph; configuration;
D O I
10.1016/j.disc.2005.09.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known Petersen graph G(5, 2) admits a semi-regular automorphism alpha acting on the vertex set with two orbits of equal size. This makes it a bicirculant. It is shown that trivalent bicirculants fall into four classes. Some basic properties of trivalent bicirculants are explored and the connection to combinatorial and geometric configurations are studied. Some analogues of the polycirculant conjecture are mentioned. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 25 条
[1]   Counting symmetric configurations ν3 [J].
Betten, A ;
Brinkmann, G ;
Pisanski, T .
DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) :331-338
[2]   Small triangle-free configurations of points and lines [J].
Boben, M ;
Grünbaum, B ;
Pisanski, T ;
Zitnik, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (03) :405-427
[3]   I-graphs and the corresponding configurations [J].
Boben, M ;
Pisanski, T ;
Zitnik, A .
JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (06) :406-424
[4]   Polycyclic configurations [J].
Boben, M ;
Pisanski, T .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (04) :431-457
[5]  
BOUWER IZ, 1988, FOSTER CENSUS
[6]   SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS [J].
COXETER, HSM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (05) :413-455
[7]  
COXETER HSM, 1981, ZERO SYMMETRIC GRAPH
[8]   GROUPS OF GENERALIZED PETERSEN GRAPHS [J].
FRUCHT, R ;
GRAVER, JE ;
WATKINS, ME .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP) :211-&
[9]  
Godsil C., 2001, GRADUATE TEXTS MATH, V207
[10]   Configurations and graphs .2. [J].
Gropp, H .
DISCRETE MATHEMATICS, 1997, 164 (1-3) :155-163