Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis

被引:29
作者
Nienhaus, Gerd Ulrich [1 ]
机构
[1] Univ Ulm, Dept Biophys, D-89069 Ulm, Germany
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
关键词
biofunctionalization; biopolymers; chemical denaturation; fluorescence; Forster resonance energy transfer (FRET); guanidinium chloride; imaging; molecular dynamics; nanolayers; optics; proteins; protein folding; RNase H; single-molecule studies; surfaces;
D O I
10.1002/mabi.200600158
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins are highly complex biopolymers, exhibiting a substantial degree of structural variability in their properly folded, native state. In the presence of denaturants, this heterogeneity is greatly enhanced, and fluctuations take place among vast numbers of folded and unfolded conformations via many different pathways. To better understand protein folding it is necessary to explore the structural and energetic properties of the folded and unfolded polypeptide chain, as well as the trajectories along which the chain navigates through its multidimensional conformational energy landscape. In recent years, single-molecule fluorescence spectroscopy has been established as a powerful tool in this research area, as it allows one to monitor the structure and dynamics of individual polypeptide chains in real time with atomic scale resolution using Forster resonance energy transfer (FRET). Consequently, time trajectories of folding transitions can be directly observed, including transient intermediates that may exist along these pathways. Here we illustrate the power of single-molecule fluorescence with our recent work on the structure and dynamics of the small enzyme RNase H in the presence of the chemical denaturant guanidinium chloride (GdmCl). For FRET analysis, a pair or fluorescent dyes was attached to the enzyme at specific locations. In order to observe conformational changes of individual protein molecules for up to several hundred seconds, the proteins were immobilized on nanostructured, polymer coated glass surfaces specially developed to have negligible interactions with folded and unfolded proteins. The single-molecule FRET analysis gave insight into structural changes of the unfolded polypeptide chain in response to varying the denaturant concentration, and the time traces revealed stepwise transitions in the FRET levels, reflecting conformational dynamics. Barriers in the free energy landscape of RNase H were estimated from the kinetics of the transitions.
引用
收藏
页码:907 / 922
页数:16
相关论文
共 112 条
[1]   Biofunctionalized polymer surfaces exhibiting minimal interaction towards immobilized proteins [J].
Amirgoulova, EV ;
Groll, J ;
Heyes, CD ;
Ameringer, T ;
Röcker, C ;
Möller, M ;
Nienhaus, GU .
CHEMPHYSCHEM, 2004, 5 (04) :552-555
[2]   KINETICS OF FORMATION OF NATIVE RIBONUCLEASE DURING OXIDATION OF REDUCED POLYPEPTIDE CHAIN [J].
ANFINSEN, CB ;
HABER, E ;
SELA, M ;
WHITE, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (09) :1309-+
[3]  
BALDWIN RL, 1995, J BIOMOL NMR, V5, P103
[4]   Fluorescence spectroscopy of single molecules under ambient conditions:: Methodology and technology [J].
Böhmer, M ;
Enderlein, J .
CHEMPHYSCHEM, 2003, 4 (08) :793-808
[5]   Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy [J].
Boukobza, E ;
Sonnenfeld, A ;
Haran, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (48) :12165-12170
[6]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[7]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[8]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[9]   MOLECULAR-DYNAMICS SIMULATION OF PROTEIN DENATURATION - SOLVATION OF THE HYDROPHOBIC CORES AND SECONDARY STRUCTURE OF BARNASE [J].
CAFLISCH, A ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1746-1750
[10]   Direct observation of the three-state folding of a single protein molecule [J].
Cecconi, C ;
Shank, EA ;
Bustamante, C ;
Marqusee, S .
SCIENCE, 2005, 309 (5743) :2057-2060