A Multi-Scale Feature Extraction-Based Normalized Attention Neural Network for Image Denoising

被引:19
作者
Wang, Yi [1 ]
Song, Xiao [2 ]
Gong, Guanghong [1 ]
Li, Ni [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
关键词
image denoising; attention neural network; multi-scale feature extraction; PSNR; SSIM; TRANSFORM; NOISE;
D O I
10.3390/electronics10030319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [21] Deep unfolding multi-scale regularizer network for image denoising
    Xu, Jingzhao
    Yuan, Mengke
    Yan, Dong-Ming
    Wu, Tieru
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (02) : 335 - 350
  • [22] Image Denoising via Multi-Scale Gated Fusion Network
    Li, Shengyu
    Chen, Yaowu
    Jiang, Rongxin
    Tian, Xiang
    IEEE ACCESS, 2019, 7 : 49392 - 49402
  • [23] Deep unfolding multi-scale regularizer network for image denoising
    Jingzhao Xu
    Mengke Yuan
    Dong-Ming Yan
    Tieru Wu
    Computational Visual Media, 2023, 9 : 335 - 350
  • [24] Multi-task learning for the bearing based on a one-dimensional convolutional neural network with attention guidance mechanism and multi-scale feature extraction
    Xing, Yitong
    Feng, Jian
    Yao, Yu
    Li, Keqin
    Wang, Bowen
    INSIGHT, 2023, 65 (08) : 433 - 442
  • [25] Artifact-Assisted multi-level and multi-scale feature fusion attention network for low-dose CT denoising
    Cui, Xueying
    Guo, Yingting
    Zhang, Xiong
    Hong Shangguan
    Liu, Bin
    Wang, Anhong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (05) : 875 - 889
  • [26] Image super-resolution using supervised multi-scale feature extraction network
    Yemei Sun
    Yan Zhang
    Shudong Liu
    Weijia Lu
    Xianguo Li
    Multimedia Tools and Applications, 2021, 80 : 1995 - 2008
  • [27] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Jia, Xinlei
    Peng, Yali
    Ge, Bao
    Li, Jun
    Liu, Shigang
    Wang, Wenan
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1231 - 1246
  • [28] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Xinlei Jia
    Yali Peng
    Bao Ge
    Jun Li
    Shigang Liu
    Wenan Wang
    Neural Processing Letters, 2023, 55 : 1231 - 1246
  • [29] Underwater image restoration with multi-scale shallow feature extraction and detail enhancement network
    Wu, Heng
    Deng, Lei
    Chen, Meiyun
    Luo, Shaojuan
    Zhang, Fanlong
    He, Chunhua
    Zhang, Xianmin
    JOURNAL OF MODERN OPTICS, 2023, 70 (13-15) : 886 - 900
  • [30] Image super-resolution using supervised multi-scale feature extraction network
    Sun, Yemei
    Zhang, Yan
    Liu, Shudong
    Lu, Weijia
    Li, Xianguo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) : 1995 - 2008